Insider Threat Event Detection in User-System Interactions

Pablo Moriano*
School of Informatics, Computing, and Engineering
Indiana University
Bloomington, IN 47408
pmoriano@indiana.edu

Steven Rich
Advanced Security Research Group
Cisco Systems, Inc.
Knoxville, TN 37932
srich@cisco.com

ABSTRACT

Detection of insider threats relies on monitoring individuals and
their interactions with organizational resources. Identification of
anomalous insiders typically relies on supervised learning models
that use labeled data. However, such labeled data is not easily ob-
tainable. The labeled data that does exist is also limited by current
insider threat detection methods and undetected insiders would
not be included. These models also inherently assume that the
insider threat is not rapidly evolving between model generation
and use of the model in detection. Yet there is a large body of re-
search that illustrates that the insider threat changes significantly
after some types of precipitating events, such as layofls, significant
restructuring, and plant or facility closure. To capture this tempo-
ral evolution of user-system interactions, we use an unsupervised
learning framework to evaluate whether potential insider threat
events are triggered following precipitating events. The analysis
leverages a bipartite graph (also known as a two-mode graph) of
user and system interactions. The approach shows a clear corre-
lation between precipitating events and the number of apparent
anomalies. The results of our empirical analysis show a clear shift
in behaviors after events which have previously been shown to
increase insider activity, specifically precipitating events. We ar-
gue that this metadata about the level of insider threat behaviors
validates the potential of the approach. We apply our method to
a dataset that comprises interactions between engineers and soft-
ware components in an enterprise version control system spanning
more than 22 years. We use this unlabeled dataset and automat-
ically detect statistically significant events. We show that there
is statistically significant evidence that a subset of users diversify
their committing behavior after precipitating events have been an-
nounced. Although these findings do not constitute detection of
insider threat events per se, they do identify patterns of potentially
malicious high-risk insider behavior. They reinforce the idea that
insider operations can be motivated by the insiders’ environment.
Our proposed framework outperforms algorithms based on naive
random approaches and algorithms using volume dependent statis-
tics. This graph mining technique has potential for early detection
of insider threat behavior in user-system interactions independent
of the volume of interactions. The training method also enables

*Corresponding author. The contribution of this author was made when he was a
summer research intern at Cisco Systems, Inc., Knoxville, TN.

Jared Pendleton
Advanced Security Initiatives Group
Cisco Systems, Inc.
Knoxville, TN 37932
jarpendl@cisco.com

L. Jean Camp
School of Informatics, Computing, and Engineering
Indiana University
Bloomington, IN 47408
ljcamp@indiana.edu

organizations without a corpus of identified insider threats to train
its own anomaly detection system.

KEYWORDS

Anomaly detection, insider threat, bipartite graph, graph mining,
community structure, IBM Rational ClearCase

1 INTRODUCTION

Information systems are critical components in today’s organiza-
tions. Among the main functions of information systems is the
ability to provide confidentiality, integrity, and availability of pro-
cesses involving user-system interactions. Insiders are employees
that must be trusted with access to sensitive information, and can
be a major threat. Insiders have compromised organizations in
multiple domains including manufacturing [33], finance [15], gov-
ernment [14], and even scientific research [9]. Even worse, insiders’
attacks are consistently catalogued as the most costly given the ele-
vated privilege that insiders have in terms of trust and access [30].
This makes the insider issue one of the most challenging problems
in computer security [6].

As with many other complex systems (e.g., the Internet, online
social networks, and the brain), information systems consists of a
large number of interacting elements (e.g., users, services, devices,
files, etc.) in which the aggregate activity of the system cannot be
derived by analyzing individual contributions, i.e., their aggregate
behavior is nonlinear. Graphs, where nodes represent the elements
and edges capture the interactions between the elements of the
system, have been used across multiple domains to capture the
interactions between the elements of complex systems [26, 37].
The use of graphs to study the structure of complex systems have
revealed some plausible explanations for the emergence of collective
behavior in these systems such as the understanding of regular and
anomalous behavior [3]. In this work, we treat the malicious insider
as an anomaly and use bipartite graphs to detect their anomalous
behaviors.

The focus on malicious patterns, as opposed to malicious nodes,
implements an assumption that the malicious insider is not intrin-
sically hostile. Rather, malicious behaviors can emerge over time
or in respect to specific conditions. Static analysis is based on the
analysis of graph snapshots and cannot integrate temporal patterns.
In contrast, the study of temporal graphs, where information of

single graph snapshots is aggregated, tends to reflect more accu-
rately the evolution of the system as nodes and edges appear and
disappear over time [19, 31]. The focus of this work is to understand
the malicious behaviors over time rather than identifying the static
malicious nodes.

To understand such complex systems, empirical data with de-
tailed temporal information is a prerequisite. Correct temporal
information is much more readily available as a source of ground
truth than correctly labeled insider threat datasets. In the context
of information systems, temporally annotated datasets are widely
available thanks to the presence of user-system interaction logs.
This enables the use of graph mining analytics for the understand-
ing of anomalous behavior such as the one that insiders might
pose [12, 29].

For the purposes of this paper, we characterize and detect anoma-
lous events in an information system based on a centralized version
control system'. We identify time intervals during which significant
changes in the structure of the temporal graphs may correspond to
functional change points, e.g., a precipitating event”. This problem
has also been referred to as change point detection [4].

We model user-system interactions in a version control system
as a temporal bipartite graph where interactions occur exclusively
between two types of nodes, (i) users and (ii) software compo-
nents’. Note that the edges in this graph are only between these
two types of nodes [18]. A one-mode projection of this graph is the
user graph in which two nodes (users) are connected if they have
interacted at least once with the same software component [39].
Our methodology includes studying the evolution of the one-mode
user graph to identify topological properties that characterize the
system’s normal behavior. Among these observed properties, those
that do not follow the norm of the regular pattern are assumed to
indicate the presence of an anomalous event. Such an event may in-
dicate a potential insider incident or, at least, an event that requires
further investigation [32].

In particular, the user graph allows us to explore the impact of
precipitating events in user-system interactions [28]. Precipitating
events are key events that have the potential to trigger insiders to
become a threat to their employer. We hypothesized that precipitat-
ing events impact the behavior of interactions between users and
software components in the control version system, by changing
patterns of committing behavior. To test this hypothesis, we model
and compare the volume of interactions between users over similar
or related software components as opposed to non-related software
components over time. To capture sets of users with similar pat-
terns of interaction, we rely on the notion of community structure
to identify communities, or clusters, i.e., groups of nodes having
higher probability of being connected to each other than to mem-
bers of other groups [16]. We show that the volume of interactions
between users that contribute to unrelated software components

1A centralized version control system keeps the history of changes on a central server
from which everyone requests the latest version of the work and pushes the latest
changes to, e.g., Concurrent Versions System and IBM Rational ClearCase.

A precipitating event corresponds to a large-scale event that causes concerning
behaviors in employees and predisposed them to malicious actions. In this category,
we include layoffs, significant restructuring, and plant or facility closure.

3 A software component is a software module that encapsulates a set of related functions
or data, and it is part of a larger software system. For example, the TCP/IP software
component of an operative system.

increases when precipitating events are announced. This indicates
the impact of precipitating events in increasing the likelihood of
a change in the interacting behavior between users and software
components, which might be a signal to monitor before an insider
attack is committed.

To summarize, we make the following key contributions:

o Temporal graph analysis framework: We propose a generic
temporal graph analysis framework to model the evolution
of bipartite graphs. The proposed framework is based on the
idea that the evolution of user-system interactions can be
abstracted as a dynamic system of consecutive graphs—also
called graph stream (Section 3.2). We use the proposed frame-
work to formalize a set of measurements of the observed
graphs at each time interval.

e Performance evaluation framework: We propose a generic
framework to compute the performance of an event detec-
tor (Section 3.5). We compare the the performance of the
proposed approach with a naive random event detector and
others that are based on edge dependent properties (Sec-
tion 4.3).

o Graph mining analytics: We use graph mining to reveal that
some properties of the one-mode projection of the bipartite
graph significantly change in the presence of precipitating
events. Recall the one-mode projection maps user-to-user
interactions. To do this, we leverage more than 22 years of
data on user-system interactions in a control version sys-
tem. In particular, we show that users tend to diversify their
patterns of interactions with software components after a
precipitating event is announced (Section 4.1). Our results
suggest that this change in user behavior can be used to infer
when anomalous events are happening before widespread
disruption. Our work is differentiated from the work in [18]
in three ways. First, we rely on the notion of community
structure to inform the detection process. Second, we inte-
grate the volume of interactions between users in different
communities into the event detection. Finally, we quantify
the perturbations inserted in the system after precipitating
events that might lead to insider threats. Methodologically
closest to our work is an analysis of the Enron email corpus
and Twitter data in [24]. This work is differentiated not only
by the domain (i.e.,, version control system) but also in that
we abstract interactions as a bipartite graph and compare
our detection results with standard detection approaches.

The rest of the paper is structured as follows. Section 2 discusses
related work in the characterization of insider threats, anomaly
event detection in temporal graphs, and graph-based approaches
for insider threat detection. Section 3 provides a description of the
modeling framework for algorithm detection and performance, as
well as the dataset. Section 4 shows the results of the temporal
graph analysis. We place special emphasis on the characterization
of the time intervals before, during, and after the specific events.
We also compare the performance of the proposed algorithm with
a random and edge-density based detection frameworks. Section 5
is our discussion of the implications of the results, including ad-
dressing the possible implications for implementation that take

into account ways to better tune the proposed algorithm. Finally,
Section 6 presents concluding remarks and areas for future research.

2 RELATED WORK

It is an open debate as to whether insider threat events are primarily
triggered in the wake of precipitating events. To study whether
this is the case, we modeled user-system interactions in a control
version system as a temporal bipartite graph. This abstraction al-
lows us to test the hypothesis as to whether the diversification of
the committing behavior of users changes after the presence of
a precipitating events. Consequently, this analysis is informed by
past research in the characterization of insider threats, anomaly
detection in temporal graphs, and detection of insider threat using
graph-based approaches. Here, we provide an overview of related
works in these three areas.

2.1 Characterization of insider threats

Much of the research on insider threats have been on the char-
acterization of insiders. In general, two different categorizations
have been proposed to classify insiders. The first one comprises
the intention of the attack [7]. Under this categorization, insid-
ers are classified as (i) malicious, where the insider intentionally
causes a negative impact on the confidentiality, integrity, and avail-
ability of the information system; and (ii) non-malicious (acciden-
tal), where an insider with no malicious intent—through action or
inaction—causes or increases the chance of future detriment in the
confidentiality, integrity, or availability of the information system.

The second categorization is given with respect to the purpose
of the attack [6]. With that definition in mind, two types of attacks
are defined more precisely, including (i) a sabotage attack in which
the insider is able to change the value of an artifact used in the
computation of a process; and (ii) a data exfiltration attack in which
the insider provides access to artifacts for entities that are not
entitled to that access.

In addition to the previous two-tiered categorization, Nurse et
al. proposed a unifying framework to characterize insiders based
on the motivation behind malicious threats and the human factors
related to the unintentional cases [28]. This framework is of par-
ticular importance not only because it leverages previous insider
threat case studies, but also due to its analysis of behaviors that
may lead to attacks and the types of attacks that may be executed.
The factors that are proposed to this end encompass precipitating
events and motivation to attack.

2.2 Anomaly event detection in temporal
graphs

There are five general approaches for the design of event detection
algorithms in temporal graphs [31]. First, compression-based meth-
ods represent the graph in a different compact space using methods
such as minimum description length (MDL) [34]. Anomalous events
are detected when it is difficult to get a compressed representation
of the graph. For example, Sun et al. proposed reducing the binary
representation of the adjacency matrix of a graph so as to minimize
the cost of encoding [36].

Second, decomposition methods analyze the spectral properties
of a matrix representation of a graph stream by inspecting regular

patterns associated to the eigenvalues and eigenvectors. An event
is reported when there is low similarity between the principal
eigenvector of the current graph and the aggregated graph during
the previous time frame. The work by Akoglu and Faloutsos applied
this idea on a mobile graph of users when inspecting a correlation
matrix between pairs of nodes over a time interval [2].

Third, distance measure methods evaluate distance between
graphs as a metric to identify anomalous events. The distance be-
tween consecutive graphs is computed based on changes in a spe-
cific structural property. Consecutive graphs with a significant
distance between them should raise an alarm. The work by Koutra
et al. explored this idea by comparing graph adjacency matrices
of pairwise node affinities using a variation of the Euclidean dis-
tance [22].

Fourth, statistical methods are based on constructing statistical
(parametric or non-parametric) models (e.g., graph likelihood or the
distribution of the eigenvalues) to identify deviations from models.
Anomalous events are identified by calculating the likelihood of a
particular graph object, e.g. node, edge, subgraph into each graph
added to the sequence. For example, Aggarwal et al. proposed a
method that quantifies the probability of rare edges appearing
between subgraphs, allowing to pinpoint time intervals where this
happens [1].

Finally, community-based methods focused on analyzing the
formation of graph community structures. The idea behind this
approach is to report an anomalous event whenever there is a
significant change in any of the communities. The work by Duan
et al. computed the similarity between the partition of nodes of
incoming graphs and previous graph segments, i.e., a subset of a
series of graphs. A similarity below a certain threshold indicates
the occurrence of an anomalous event [11].

The method proposed in this work relies on the notion of graph
community structure. For a comprehensive discussion about event
detection methods in temporal graphs, we refer the reader to the
survey led by Ranshous et al [31].

2.3 Insider threat detection using graph-based
approaches

Graph mining techniques have also been used as a tool to under-
stand and identify malicious actions by insiders. Eberle et al. pro-
posed an approach to detect anomalous subgraphs with respect to
the number of transformations that a subgraph will need in order to
be a reference—the normative or best—subgraph [12]. The approach
relies on MDL to quantify the number of required transformations
as a criterion of decision [27]. The authors validated their approach
using empirical data on a passport processing scenario. In particu-
lar, they were able to identify some bypassable steps in the process
of getting a passport, which represents an anomalous structure of
unseen edges.

To address the dynamic nature of empirical data, in a recent
work, Eberle et al. introduced a method for pattern learning and
anomaly detection in streams using parallel processing [13]. This
work offers a considerable improvement on speedup compared to
the previous approach by allowing the processing of dynamic data.
The authors validate their approach on empirical data on embassy

employee activity in which the threat was information leakage by
employees.

Closer to our work, Kent et al. used the notion of bipartite
graphs—by capturing interactions through authentication logs be-
tween users and computers—for assessing network authentication
trust risk and cyber attack mitigation [21]. In particular, they ex-
amined the number of connected components (i.e. a subgraph in
which any two nodes are connected to each other by a path) in the
bipartite graph to assess potential risk of credential stealing and
compromise within an enterprise network. They found that the
increase in the number of connected components in the bipartite is
associated with a reduction in the risk associated with credential
theft and subsequent credential hopping within the network.

Of similar nature, Chen et al. proposed an unsupervised learning
model based on social network analysis for detecting anomalous
access in collaborative information systems [8]. Their approach
relied on the quantification of pairwise similarities of nodes in a
graph based on their interactions with particular subjects when in-
teractions are made between users and subjects in a bipartite graph
setting. The authors validated their results with patient record
access data and Wikipedia edit logs.

Note that the previous methods of insider threat detection (using
graph mining techniques) were based on identifying anomalous
graph structures (i.e., nodes, edges, subgraphs) while the focus
of our paper is based on the detection of anomalous events (i.e.,
time intervals with an unusual pattern of interactions) on temporal
graphs.

3 METHODS

In this section, we detail the mathematical frameworks and data
sources that were used to perform the analysis. We start by describ-
ing the temporal framework used to build the graphs (Section 3.1);
the bipartite graph modeling (Section 3.2); the one-mode projection
abstraction (Section 3.3); the detection problem definition (Sec-
tion 3.4); the algorithm performance abstraction (Section 3.5); the
metric of algorithm performance (Section 3.6); the proposed algo-
rithm (Section 3.7); and the dataset used to arrive at the results
(Section 3.8).

Our method builds graphs of user-system interactions and use
these to identify anomalous patterns. Anomalies are identified when
engineers interact with multiple software components that they are
not used to. Performance is measured by the ability of the algorithm
to detect increases in anomalous behavior after precipitating events
without increases elsewhere.

3.1 Temporal abstraction

Consider the sequence of n intervals A = {Aj,Ag,...,Ap} =
{Ak}Z:p where

1. Ag = [ak,a;c) forallk < nand A, = [ap, aj,] for k = n;

2. ar < ap = aj,q for all k; and

3. a;c —a = az,—agforallk, 4
An interval represents a fixed-length unit of time, e.g., a day of
data. Condition (1) implies that all intervals are left-closed and
right-open (except the last one which includes a},). It guarantees
that the sequence of intervals is disjoint. Condition (2) implies that
intervals are non-empty. Note that a,’C and ay | represent the time

instants of a transition between intervals. For any interval A, the
right endpoint a;c corresponds to the left endpoint of the interval
Apg41- Together with Condition (1), Condition (2) guarantees that
the union of all intervals UZ=1 Ap = [a1,a},] is a closed interval.
Finally, Condition (3) requires that any two intervals are of equal

length.

3.2 Bipartite graph abstraction

A bipartite graph is a graph with two types of nodes. One type of
nodes represents the original nodes (top nodes), while the other
represents the groups with which they interact (bottom nodes) [17].
Let H+ be the set of top nodes (e.g., the set of engineers). Simi-
larly, let H, be the set of bottom nodes (e.g., the set of software com-
ponents). Note that H+ and H are disjoint sets of nodes. Further-
more, let V (k) C Ht UH, be the subset of nodes that interact (i.e.,
engineers and software components) during interval A = [ag, a;c).
Let W(k) = {Q;j(k) : (i,j) € Ht X HL.} be the incidence matrix
of weights Q; (k) that captures the number of interactions between
node i and node j during interval Ay. Let G(k) = (V(k), W(k))
represent a weighted bipartite graph that captures all interactions
that occur from endpoints aj to a;<, k € {1,2,...,n}. Note that
we do not differentiate between dynamics within an interval. The
sequence {G(k)}}'_, denotes the bipartite graph series G.

3.3 One-mode projection abstraction

Bipartite graphs can be projected to one-mode projection graphs
(with nodes of just one type). Let Gr(k) = (H1(k), W~ (k)) be
the top projection of G(k). Two nodes of H~ (k) are connected if
they have at least one neighbor in common in G(k), i.e., W+ (k) =
{wuv(k) : u,v € Hr}, where

ouv(®) = ST (k) + Qo (k)

The sequence {gT(k)}Z:l denotes the top one-mode projection
graph series Gt. Correspondingly, the bottom projection G, (k) =
(Ho(k), W, (k))is defined dually as it is illustrated in Figure 1. The
sequence {Ql(k)}zzl denotes the bottom one-mode projection
graph series G| . In the rest of this paper, we devote our study in
terms of Gt which is the one-mode projection graph of user-system
interactions, i.e., the projection in which nodes are exclusively
engineers.

3.4 Detection problem

We use Gt, which captures the dynamics across intervals Ap,
k € {1,2,...,n}, as the basis for defining the anomaly event detec-
tion problem. In doing so, we evaluate the outcomes of anomaly
detection by measuring structural properties with respect to the
cumulative one-mode graph segment of length m € Z* defined as

Grk) = (V{(k), Wi'k)

k
P or&)=6rk-m+ne- a6k

k'=k-m+1
where
k k
vk = | VE)adwrk = > Wik
k'=k-m+1 k'=k-m+1

Alice Carol Dave Eve

VYV V
1

Frank

Alice Bob Carol Dave Eve Frank

ey
U
s

Figure 1: Bipartite graph abstraction. The top panel repre-
sents the engineer projection. The middle panel represents

the original bipartite graph. The bottom panel represents
the software component projection.

For example, if m = 7, we aggregate data to form weekly graph
segments.

Let Im, where [€ Z* represents the smallest interval at which we
evaluate the outcomes of anomalous detection (called the detection
resolution). Note that if [> 1 then the intervals at which the graph
segments are evaluated are not the same as the ones at which they
are formed. The finest detection granularity satisfies [= 1, i.e., when
the detection resolution is the same as the graph segment formation
intervals. A larger value of [reflects that anomalous events are
captured by the aggregation of consecutive graph segments. For
instance, if | = 2, then an algorithm for detection aims to determine
whether such an event occurs within intervals (ak_lmﬂ,a;c] =
(ak-z2m+1-a;) k € {2m,... n}. Letn = L%J be the total number
of times the algorithm with resolution /m has to decide whether an
event occurs. Let the set E C {1,2,..., 7} represent the intervals at
which at least one event occurs. The detection problem is specified
as follows.

Given:
(i) A one-mode projection graph series Gt = {QT(k)}ZZI;
and
(ii) A detection resolution 1 < Im < n.
We want to:
(ii) Design a detection algorithm that identifies the subset of
intervals E C E in which at least one anomalous event
occurs.

Condition (i) requires that the dataset can be modeled as a series of
one-mode projection graphs that aggregate the interactions occur-
ring during each interval. Condition (ii) assumes that the resolution
for detection is known.

3.5 Algorithm performance abstraction

Consider a sequence of detection intervals B = {B1, By, ...,Bs} =
{ag-1yim+1- a;lm]};—‘zl = {Bt};‘zl.:l'o measure performance, the
output of the detection algorithm E is mapped into the sequence
of intervals B. Let é € E be the index of a detection interval that is
denoted as anomalous by the detection algorithm (i.e., the algorithm
indicates the occurrence of at least one anomalous event within the
interval). The set E can be represented by the indicator vector

0= \/{IlBt(lmé), Vie{1,2,...,a}}, VéeE

where \/ represents the OR operator and 15, (Imé) denotes the
indicator function

1 iflmé e B;

Lg, (Imé) :{ 0 iflmé ¢ B,

In other words, if 1 g, (Imé) = 1, the algorithm identifies an anoma-
lous event in the detection interval (a(;_1)im+1- a; 1m] and labels

it as an anomalous interval. The indicator vector O describes the
interval indices, i.e, t € {1,2,...,7} that contain an anomalous
event.

Moreover, to characterize the occurrence of actual events during
an interval, we define e € E as the index of a detection interval
that is anomalous based on the ground truth. Let the indicator
vector O =/ {ILBt(lme), Vte{1,2,.. .,fz}}, Ve € E represents
the intervals that are anomalous based on the ground truth, i.e., the
distribution of the anomalous events over the set of the 7 detection
intervals. Figure 2 illustrates the proposed modeling framework.
For example, suppose that E = {s, i} (represented by the horizontal
arrows) and E = {s} (represented by the horizontal crossed arrow).
To pinpoint the detection interval s, there might exist a time index
r = ms such that 1g_(r) = 1. This is represented by the vertical
arrows in Figure 2.

3.6 Algorithm performance measure

The performance of a detection algorithm is measured based on
identifying the anomalous detection intervals. Specifically, the per-
formance of an algorithm is specified based on the set of time
intervals E reported as anomalous by the detection algorithm and
the set of time intervals E in which anomalies occur (ground truth).

We compare the performance of the detection algorithms using
the true positives (TP), false positives (FP), false negatives (FN), and
true negatives (TN) of the detection results. In particular, TP = O-O,
FP=0'-0O,FN=0-0’, and TN = O’ - O’ where the symbol “”
represents the dot product between two vectors, and O’ and 0’
represents the complement of O and O respectively.

In other words, a detection algorithm specifies the intervals
based on a detection criterion. Similarly, to measure performance,
it is necessary to know the ground truth anomalous events. The
detailed pseudo-code for the algorithm’s performance measure is
presented in Algorithm 1. Next, we introduce a detection criterion

A
Index k
n
n—1
r
2
1k >
a Time
Index ¢
n <
s G
1 >
Time

Figure 2: Abstraction of the detection problem. The top
panel refers to the sequence of intervals that are used to
build the graphs (here the graph formation interval m = 1).
The bottom panel illustrates the aggregation of intervals to
evaluate the performance of the detection algorithm (here
detection resolution /m = 2). The vertical arrows represent
the location of an anomalous event in both temporal repre-
sentations. The horizontal arrows illustrate the sets E and
E.

based on the dynamics of the formation of communities and the
interaction of engineers across and within them.

3.7 Proposed algorithm

The proposed algorithm aims to define detection signatures based
on deviations from the regular process of community interaction.
To do so, we explore whether variations in the number of edges
across communities (with respect to the total number) are indica-
tors of anomalous events. This is done by comparing edges in the

Algorithm 1 Algorithm-Performance (E, E, n)

1: O « zeros(f)

2. for ¢ € E do

3 0; — {}

4 fort e {1,2,...,n} do

5: Os « O U1, (é)

6 end for

7 O « O OR O (element wise)
8: end for

9: O « zeros(fn)

10: for e € E do

11: O —{}

12: fort e {1,2,...,Aa} do

13: O¢ < O, U 1p,(e)

14: end for

15: O « O OR Og (element wise)
16: end for

172 O’ «— NOT (0)

18: O’ — NOT (0)

19: TP «—0-0

20: FP — 0’ -0

21: FN < 0- 0’

222 TN < O’ - O’

23: return (TP, FP, FN, TN)

user graph with respect to a community partition reference over
aggregate data.

Let the initial cumulative one-mode graph segment of length my,
1 < my < n be defined as

_’rﬂo _ (rV_Fﬂo,rw_FHO)

P o) =g-me & Grim)

k'=1

where (V.F"U = Uz"zl Vr (k') and (W.Ir.n" = er:f":l W+ (k).
The proposed detection algorithm requires the following assump-

tion.

(A1) The initial cumulative graph segment G can be natu-
rally divided in non-overlapping communities, i.e., groups
of nodes that can be grouped into subsets such that each set
of nodes is densely connected internally and in which nodes
belong to a single group [25].

Let the set T = {mg + m,mg + 2m, ..., Am} captures the time
intervals at which the algorithm will be applied. Note that for k €
T, the series {G"(k)} forms a set of non-overlapping cumulative
graph segments.

The proposed algorithm pinpoints anomalous events by mea-
suring the proportions of inter- and intra-community edges of the
graph GT'(k) with respect to the community partition of Q.T_" 0 ie,
we want to identify the set E based on the diversification of com-
munity edges. Figure 3 shows a characterization of that situation.

To do so, let C(Q.lr_"”) ={0,1,...,c}beaset of unique community
identifiers where ¢ + 1 is the total number of detected communities
in the initial cumulative graph segment G7"°. The community to

Alice Bob Carol Dave Eve Frank

\ < _Bob - P \
Figure 3: Malicious activity in the bipartite graph. The top
panel represents an unusual interaction between Bob and
Eve with software component “E” The bottom panel repre-
sents the corresponding one mode projection graph with the
anomalous edge crossing communities.

which engineer i € V'(k) N "V.;n * is assigned (with respect to
G is given by ¢;(k) : i —> C(GI™). We computed the community
partition of the initial cumulative graph segment using the Infomap
algorithm [35]. Following similar ideas as in [38], let the set of
inter-community edges be I~ (GT(k)) = {(4,v) : wyo(k) > 0 A
(cu(k) N cy(k)) = @} and intra-community edges be Ir, (G (k)) =
{(u,v) : wyo(k) > 0 A (cy(k) Ncy(k)) # @}. We also define the

inter- and intra-community ratio as

i (G (R
k) =
&) = TG + o (G)] @
o o (G (o)
0 = @R + oGP o] @
respectively.

In particular, we are interested in identifying time intervals k,
where c{')(k) — ¢/ (k) is below median-3c or above median+3c.
The median is used instead of the mean because this measure (over
the entire period of study) does not follow a normal distribution
since appropriate hypothesis testing demonstrates that the normal
distribution is not a good candidate to model the generation of the
empirical observations. We used the interquartile range to estimate
o as it has been studied by others, e.g., [23]. The detailed pseudo-
code for this algorithm is shown in Algorithm 2.

For algorithm performance comparison purposes, we replace the
computation of ¢’} (k) — /% (k) by the respective graph topological
property, e.g., nodes, edges, connected components, average degree,
maximum degree, or maximum weight with respect to G7* (k).

3.8 Dataset

IBM Rational ClearCase (hereafter ClearCase) is an enterprise-
grade software configuration management system. Among its main
features, it provides version control functionalities to large- and
medium-size organizations allowing them to track software projects

Algorithm 2 Event-Detection (G, mg, m)

: Compute community partition of G

Y « {} > Array of intra—inter ratio samples
: for kin {mgo + m,my + 2m, ...,im} do

Build G7(K) = B __ s G7(K)

Compute I~ (G (k))

Compute I, (G (k))

Calculate ¢ (k) and cg(k) using egs. 1 and 2

Y < YU {ci(k) - cA(k)}

. end for

. median — F(0.50)

: (E — F10.75) - F1(0.25)

: for k in {mg + m,my + 2m, ..

R AR A > e

> F means the empirical CDF

=
_- O

> The interquartile range

—
N

.,im} do

Jun
w

14: if Y(k) <= (median — 30) or Y(k) >= (median + 30) then
15: E—Eu{k}

16: end if

17: end for

18: return E

with thousands of developers. As of the date of this writing, ClearCase
has a market share of about 2.5% among software configuration
management competitors with 55% of their customers in the U.S. [20].

The ClearCase dataset analyzed in this paper comprises the
complete activity between engineers and software components in
a major computer software enterprise. Software components are
software packages that encapsulate a set of related functions and
store metadata allowing version control, which is the equivalent to
a GitHub* repository. In particular, we used data that spans over 22
years from May 4, 1992 to March 23, 2014. We extracted the data
from the source code base management database. Instances with no
reference to the engineer or software component name were not
taken into account in this analysis. These comprised a negligible
percentage of instances, i.e., on the order of 8x107%%.

Using this dataset, we built bipartite graphs to capture the in-
teractions between engineers and software components. In this
bipartite graph, nodes are represented exclusively by engineers
and software components. Edges in the bipartite graph represent
interactions, i.e, any type of activity that engineers have with soft-
ware components, including: commit a file, create a file, delete a file,
create a branch, tag a branch, sync a branch, and collapse a branch.
We did not differentiate between these different interactions and
treat them as the same type of edges.

The dataset comprises 10, 253 distinct engineers, 1, 729 distinct
software components, and 12, 577, 667 interactions during the ob-
servation period.

Remember that our hypothesis is grounded on the idea that pre-
cipitating events might lead to structural changes in the committing
behavior of engineers. With that in mind, Table 1 summarizes the
details of the incidents used in this study, i.e., precipitating events
that were announced and validated internally by the enterprise.

4 A platform for software projects that offers version control hosting. Available at https:
//github.com.

https://github.com
https://github.com

Table 1: Summary of precipitating events during the obser-
vation period.

Event ID Date Jobs % affected
impacted | employees
(1) |2001-04-16| 8500 22.4
(2) |2011-07-18| 6500 9.1
(3) |2012-07-23| 1300 1.9
(4) |2013-03-26| 500 0.7
(5) |2013-08-09| 4000 5.3

4 RESULTS

In this section, we present the results of the analyses on the one-
mode projection (or user graph) of user-system interactions. In the
following analysis, our unit of time reference is the day, i.e., the
scale of the variable k. To estimate the length of the window m
(the window length that we use to accumulate interactions among
engineers), we relied on the methodology proposed by [5], which
estimated that the size of an observable window for a rigorous char-
acterization of graph properties is at least one week, i.e., m = 7 days.
This means that we build the bipartite and one-mode projection
graphs by aggregating data over non-overlapping windows of 7
days (every week starting on Monday).

We compare the results of the proposed event detector frame-
work to random chance. The purpose of this comparison is to ensure
that the phenomena we identify are not a result of noise or simply
the result of having stochastic data. We then compare our approach
with metrics that are based on the volume of interactions. That is,
we test if the proposed approach identifies insider risk more accu-
rately than those that identify employees by frequency or intensity
of access. Sheer counts of access are a core component of risk-based
or accounting-based insider threat approaches. The model proposed
here is more accurate and more precise. The model also offers fewer
false negatives (i.e., higher recall).

We used the same visualization conventions for every plot. The
blue solid lines show the raw data. Recall that the raw data corre-
sponds to the empirical measures for each graph topological prop-
erty. Dashed black lines represent the dates of the precipitating
events listed in Table 1 with their corresponding label in a circle.

The results of these show that the precipitating events cannot be
distinguished from other events using simple graph-based statistics.
Our assumption is that although individual events, such as eco-
nomic stress, may result in an individual becoming an insider threat,
only systematic organizational changes should be correlated with
large-scale increases in insider threat behaviors. Section 4.1 shows
the graph-based statistics for the one-mode projection graphs. Sec-
tion 4.2 illustrates the algorithm evaluation using graph-based mea-
surements and the proposed metric in this paper. In contrast with
the results of graph-based measurements, we provide statistically
significant evidence of detection of suspicious interactions after pre-
cipitating events have been announced using the proposed metric.
Section 4.3 describes the way in which we obtained the results of the
randomly generated algorithm and the performance comparison of
each metric based on different detection resolutions.

4.1 One-mode projection graph properties
series

We report results related to the number of nodes, edges, connected
components, average degree, maximum degree, and maximum
weight for the temporal one-mode projection graphs. Formalisms
about the framework to build the graphs are defined in Section 3.3.
The specific properties that we measured from these graphs are
listed here for the reader. The edges occur when two engineers have
interact with the same software component (i.e., same code reposi-
tory). The degree of node i is d; (k), i.e., its number of neighbors. The
set of edges of of the graph G+ (k) is &1 (k). A connected component
is a subgraph in which any two nodes are connected to each other
by paths. The average degree of graph G+ (k) is 2% |E+ (k)| /| Vr (k)|
The maximum degree of graph G (k) is the maximum number of
neighbors in the graph, i.e, max{d;(k), Vi € Vr(k)}. The maximum
weight of a graph G (k) is the maximum weight of edges in the
graph, i.e, max{w;j(k), Vi, j € Vr(k)}.

Figure 4 (top) shows the observed number of nodes (i.e., en-
gineers in the user graph). Figure 4 (middle) shows the number
of unique edges representing the number of interactions between
engineers. Figure 4 (bottom) shows the number of connected compo-
nents in the one-mode projection graphs. In general, for the number
of nodes and edges, there is an increase in these measurements after
roughly 2002. The tendency starts to decrease after approximately
2010 when other version control systems began to be adopted. Thus,
after 2010, the data are a large sample rather than a comprehensive
dataset. The movement of some core technologies to a different
versioning system is reinforced by the continuous increase in the
number of connected components in the bipartite graph, which
indicates a less integrated core of software components.

Similarly, Figure 5 (top, middle, bottom) shows the time series
of average degree, maximum degree, and maximum weight respec-
tively. Although there are several spikes for these measurements,
we present an evaluation of the proposed algorithm, when these
measurements inform the detection signature in Section 4.2.

8
c
[
s
S 50
£
o
O

o

2006 4
2008 4
20104
2012
2014 4

T
<
[=]
o
~N

2000 4
2002 4

T
©
o
)
—

1992
1994
1996

Date

Figure 4: Time series of the number of nodes (top panel),
edges (middle panel), and connected components (bottom
panel) for the one-mode projection graphs.

Avg. degree

Max. degree

T

o < ©o oo} o o < © © o o~ <

o o o o IS} =} =) o o = o~ ~

o) =)) <3 S <} <} o o o o

- - — — o~ o~ o~ ~N ~N o~ o~ ~N
Date

Figure 5: Time series of the avg. degree (top panel), max. de-
gree (middle panel), and max. weight (bottom panel) for the
one-mode projection graphs.

4.2 Algorithm evaluation

We applied the proposed algorithm for anomaly event detection by
leveraging on the structural properties of the one-mode projection
graphs. Our criteria for selection of anomalous time intervals is
based on the idea of detecting observations that are far away from
the median (for a specific time interval in which a one-mode pro-
jection graph is generated) as we specify in Algorithm 2. Following
similar visualization conventions that we used in Section 4.1, in
the following plots, the black horizontal line represents the median
from the empirical observations. Each horizontal red band repre-
sents one standard deviation (more intense red bands concentrate
observations between + one standard deviation). Remember that
the standard deviation is estimated using the interquartile range
of the distribution of these measurements. We estimated my, i.e.,
the length of the initial cumulative one-mode graph segment, by
computing maxm, |C(§.'|fl %)|. That is achieved by the end of 2002,
and it is the reason we report the following properties since January
1st, 2003.

Figure 6 (top, middle, bottom) shows the time series of nodes,
edges, and connected components after the period of characteriza-
tion of communities, ie., the period of time comprehended between
May 4, 1992 and December 31, 2002. As can be seen, even when
there are some fluctuations in these measurements, the majority
of the observations lay up to three standard deviations away from
the median. This means that few time intervals were reported as
anomalous during the observation period by relying in these prop-
erties.

We also performed similar experiments for the remaining graph-
based properties, i.e., average degree, maximum degree, and maxi-
mum weight. In particular, Figure 7 (top, middle, bottom) summa-
rizes these findings. For both average degree and maximum degree,
the algorithm did not report suspicious time intervals given that the
signal does not exceed +3 standard deviations from the mean. For
the signal corresponding to the maximum weight, various spikes
surprise the limits for detection. We report on the performance of
these measurements later in Section 4.3.

Figure 8 shows the behavior for the proposed metric. Details
on how this metric is derived are found in Equations 1 and 2. In
particular, there are some spikes that exceed the threshold used
by the algorithm and that are close enough to the release of the
precipitating events. These spikes suggest a drop in the number
of edges between members of the same communities (conversely
an increase in the number of edges between members of different
communities) which, based on our proposal, means a diversified
behavior, i.e., more interaction with different software components.

o
4]

81000 | g,
z LB, ML

Mol PO, L n. | 1a WY
T T e

2
c
[
s
S 50
£
o
O

o

2003
2004
2005 4
2006
2007
2008

® 2009
2010
2011 4
2012
2013
2014

Figure 6: Time series of the number of nodes (top panel),
edges (middle panel), and software components for the one-
mode projection graphs (bottom panel).

-
v
o

-
o
o

Avg. degree

v
o o
L

2000 T T T

Max. degree
=
o
o
o
.

/
4

600
o
=
o
‘5 400
2
x 200
©
= . ¥ 0y
0 T T T T — T g u T
m < n ©o ~ «© [} o — o~ m <
o o o o o o o — — — — —
o o o o o o o o o o o o
o~ o~ ~N o~ o~ o~ ~N o~ o~ o~ o~ o~
Date

Figure 7: Time series of the avg. degree (top panel), max. de-
gree (middle panel), and max. weight (bottom panel) for the
one-mode projection graphs.

4.3 Algorithm performance
We compare the performance of the proposed algorithm with the
performance of a random algorithm. In particular, let the output

of the random algorithm be R=Ry,...,Rp) iid. Bernoulli(0.5).
This means that each time interval is equally likely to be selected
as anomalous based on random chance.

e UIM'T"T.
Ip \m”'

cl(k) = cL(k)

0.6 —
[
Lo
!
® 0
N
05 — @
m < n ©o ~ o (=)} o — o~ m <
o o o o o o o — — — — —
o o o o o o o o o o o o
o~ o~ o~ o~ o o~ o o~ o~ o~ o~ o~

Date

Figure 8: Time series of the intra- minus inter-community
edge ratio for the one-mode projection graphs.

Performance for all the proposed algorithms is compared based
on accuracy, precision, recall, and F1 score. These measurements
were estimated using the TP, FP, FN, and TN derived from Algo-
rithm 1.

Accuracy is the most basic measure of performance for classifi-
cation. It quantifies the proportion of correctly predicted positive
and negative instances (i.e., time intervals classified as anomalous

or not that were correctly classified). It is quantified as accuracy =
TP+TN
TP+TN+FP+FN "

Precision quantifies the proportion of positive predictions that
have been correctly classified. This means that if a considerable
number of time intervals are erroneously classified as anomalous,
then the algorithm has low precision. In other words, it is a measure
of classification exactness. It is quantified as precision = %.

Recall quantifies the proportion of actual anomalous intervals
that have been predicted as positive. This means that if an insignif-
icant number of time intervals are classified as anomalous but they
are, then the algorithm has low recall. In other words, it is a measure
of classification completeness. It is quantified as recall = %.
The F1 score conveys the balance between precision on and

recall calculated through the harmonic mean. It is quantified as
precisionxrecall

precision+recall *

Figures 9, 10, 11, 12 show the performance for different detection

criteria, i.e., random, nodes, edges, connected components, average
degree, maximum degree, maximum weight and the proposed ap-
proach under different detection resolutions. Performance in the
random algorithm is calculated after 1, 000 realizations its evalua-
tion. That means that for the random algorithm, we report on the
mean and standard deviation on such measurements. As we might
expect, the performance of the proposed approach starts increasing
when the detection resolution is increased. For the maximum detec-
tion resolution that we used, i.e., 26m, the results of the proposed
approach outperforms the other measurements with a F1-score of
approximately 85.7%. Noticeably, the performance of the random
algorithm is even higher than those based on graph measurements
even when taking into account the effect of the standard deviations
represented by the error lines.

F1 score = 2

Accuracy of detection methods based on the graph-based proper-
ties is high given that the majority of time intervals are not marked
as anomalous based on the small number of precipitating events
(which makes this an unbalanced dataset).

s Accuracy B Precision . Recall N F1 score

80
704
60
40
304
20
104

Random Nodes Edges Components Avg. degree Max. degree Max. weight

©
o
L

Percentage
w
o
:

o

Proposed

Figure
4m.

9: Algorithm performance for detection resolution

Bm Accuracy W Precision . Recall

90
80
704
60
0
401
304
20 A
104

Random Nodes Edges Components ~ Avg. degree Max. degree ~ Max. weight Proposed

EEm F1 score

Percentage
w

o

Figure 10: Algorithm performance for detection resolution
8m.

5 DISCUSSION

The main assumption behind the proposed approach is that insider
threat events increase after certain types of events. Thus, counts of
potentially malicious actions correlate with the announcement of
precipitating events. We have proposed a bipartite graph framework
that learns regular community behavior based on the interactions
of engineers and software components and analyses the patterns
of connections in and between communities. We then use this to
examine a time period that includes major precipitating events. As
a result, the ground truth available for the analysis implemented
here is the rate of insider risk in the organization after precipitating
events. The validation of the model would be clear increases in
the number of interactions across communities after precipitating
events, and few increases without these.

B Precision

Wil

Random Nodes Edges Components Avg. degree Max. degree Max. weight

B Accuracy . Recall N F1 score

Percentage
w B w (=2 ~
o o o o o
! " | ! !

N
o
L

1

o
L

o

Proposed

Figure 11: Algorithm performance for detection resolution
16m.

B Precision

80
70
60
20
304
204
104

Random Nodes Edges Components Avg. degree Max. degree Max. weight Proposed

B Accuracy EEN Recall EEE F1 score

Percentage
w
o o o o
"

o

o

Figure 12: Algorithm performance for detection resolution
26m.

Precision and recall together measure how often a threat is cor-
rectly identified and how often the non-malicious is correctly iden-
tified, i.e., no false positive or false negatives. This correctness is a
significant challenge in detecting insider threats. Individual orga-
nizational tolerance for false positives versus false negatives may
differ. Figures 9-12 show that this trade-off can be changed by
altering the detection resolution for the analysis.

Our approach makes a well-grounded assumption about the
overall rate of insider threats and examines aggregate detection
after precipitating events. Alternative approaches use artificial data
with anomalies generated based on scenarios and confidential data.
Another alternative is using qualitative research and directly lever-
aging known cases. By definition, the artificial data and case studies
can only address the insider threats that have been detected us-
ing other methods. A third approach examines private datasets
which includes potential malicious insider behavior. Our results
use a private dataset subject and temporal analysis to illustrate that
insider behavior increases are correlated with what are known to
be precipitating events.

Of the three methods to address suspicious insider behavior,
reproducibility is a particular strength of artificial data and are

particular challenge to the third approach (i.e., the one used here).
The challenge to the second (case studies) and third (confidential
data) approaches are of reproduction and validation. To address
these challenges, we will release the scripts used to implement this
model on or before publication of the paper. With the publication of
our model as implemented, in addition to the description here, our
analysis can be reproduced using any organization’s private data.
One goal in publishing this work is to encourage other researchers
to use the model on the data available to them.

One requirement for this approach is adequate data to create
the one-mode projection of the interactions between engineers
from the bipartite graph of engineers and software components.
The current dataset covers more than two decades of interactions
with engineers and version control systems. The requirements for
the minimal training dataset is an open question. With logging
provided by version control systems, software organizations have
adequate data. However, other organizations with different types of
data may struggle to find the optimal input. Another question is the
optimal size of a community or subgraph [10]. This is a parameter
that will vary between organizations.

One possible weakness to this approach is that an organization
with a systematic insider threat problem may be unable to use
this as detection. Training for community detection requires the
insider’s behavior to be anomalous. For example, organizations
with high levels of turnover may consistently see behavior that
would be anomalous in another organization, one with has higher
retention or a more careful workforce.

Our approach identifies behaviors as opposed to focusing on the
motivation of an individual. As a result, the particular strength of
this method is identification of a significant number of suspicious
behaviors across the entire employee population. A weakness is
that an employee who becomes slowly malicious and increases
suspicious behaviors over time may be able to train the model
of that organization not to recognize his behavior as anomalous.
This attack would be mitigated by the characterization of others
in organization (who cannot be controlled by the insider). As with
all insider threat detection systems, any employee who has access
sufficient to manipulate the input and output of the model itself
can defeat the analysis.

It might also be the case that our assumptions are incorrect. It
may be the case also that precipitating events are not the only
triggers to this type of activity. If insider threats are a result or
response to specific events, other specific events including em-
ployee dismissal, dispute with employers, perceived injustices, fam-
ily problems, coercion, or new opportunities—as has been high-
lighted in [28]—should be consider when evaluating the proposed
approach.

6 CONCLUSIONS

In this paper, we have revisited the problem of insider threat event
detection using graph mining analytics. Our main contribution is
the proposal and evaluation of a generic analytical framework that
builds on previous results in analysis of social networks to identify
anomalous behavior by distinguishing access requests within and
beyond a given community. We analyzed access to resources (i.e.,
code repositories) by employees (i.e., coders and engineers) using a

time series of graph properties to pinpoint time intervals that iden-
tify suspicious insider behavior. The temporal analysis framework
can be used with other datasets, including by organizations with
no interest in sharing internal logs.

One major challenge in identification of potentially malicious
behavior is determining ground truth. Although catastrophic insider
events are well documented, the regular exfiltration of data by
insiders is less well documented. There is a dearth of data. To
address this, we examined the incidences of suspicious activity and
correlated these with events known to be correlated with increases
in insider threat behaviors, specifically precipitating events. The
decision criteria for identifying these time intervals is based on
quantifying changes in the way in which employees interact with
resources after precipitating events have been announced. This
performance analysis framework can be used by any organization
that has experienced precipitating events in order to test it for
applicability to its own risks. Further, by altering the time period
for the analysis, organizations can make their own trade-offs as to
the level of activity that will result in investigation.

From our results, it is possible to see that the proposed framework
is able to identify time intervals in which anomalous activity hap-
pens with a reasonable F1 measure. We compare the performance of
the proposed approach with anomaly detection approaches based
on a naive random and edge density selection of intervals. Our
approach outperforms these intuitive approaches giving us insights
on the importance of the diversification of committing behavior on
user-system interactions as a possible indicator of insider threat.

In summary, we abstract user-system interactions as a modeling
framework and apply temporal graph analysis for identification of
insider threat risks. We believe this approach could be widely ap-
plicable. Future work ideally would include partnership with other
organizations to check with the correlation with other precipitating
events, and then, in the long run, seeing the adoption of this as a
mechanism to detect high-risk behaviors by insiders.

7 ACKNOWLEDGEMENTS

Pablo Moriano acknowledges Yong-Yeol Ahn for early feedback
and discussions about the use of community diversification metrics
for detecting global anomalous events in Twitter data as well as
Jorge Finke for his insights about the definition of the temporal
abstractions for evaluation and performance of the detection algo-
rithm. All authors thank Cisco ASIG members for help in collecting
data and setting up experiments.

REFERENCES

[1] C.C. Aggarwal, Y. Zhao, and P. Yu. 2011. Outlier Detection in Graph Streams.
In Proceedings of the 27th IEEE International Conference on Data Engineering.
Hannover, Germany, 399-409. https://doi.org/10.1109/ICDE.2011.5767885

[2] L. Akoglu and C. Faloutsos. 2010. Event detection in time series of mobile
communication graphs. In 27th Army Science Conference. Orlando, FL, USA, 77—
79.

[3] L. Akoglu, H. Tong, and D. Koutra. 2015. Graph based anomaly detection and

description: a survey. Data Mining and Knowledge Discovery 29, 3 (2015), 626-688.

https://doi.org/10.1007/s10618-014-0365-y

1. Barnett and J.-P. Onnela. 2016. Change point detection in correlation networks.

Scientific reports 6 (2016), 18893. https://doi.org/10.1038/srep18893

[5] L.Benamara and C. Magnien. 2010. Estimating Properties in Dynamic Systems:
The Case of Churn in P2P Networks. In INFOCOM IEEE Conference on Computer
Communications Workshops. San Diego, CA, USA, 1-6. https://doi.org/10.1109/
INFCOMW.2010.5466700

[4

[6] M. Bishop, H. M. Conboy, H. Phan, B. I. Simidchieva, G. S. Avrunin, L. A. Clarke,
L. J. Osterweil, and S. Peisert. 2014. Insider Threat Identification by Process
Analysis. In IEEE Security and Privacy Workshops (SPW). San Jose, CA, USA,
251-264. https://doi.org/10.1109/SPW.2014.40

[7] D. M. Cappelli, A. P. Moore, and R. F. Trzeciak. 2012. The CERT Guide to Insider
Threats: How to Prevent, Detect, and Respond to Information Technology Crimes
(Theft, Sabotage, Fraud) (1st ed.). Addison-Wesley Professional.

[8] Y. Chen, S. Nyemba, W. Zhang, and B. Malin. 2012. Specializing network analysis
to detect anomalous insider actions. Security Informatics 1, 1 (2012), 5. https:
//doi.org/10.1186/2190-8532-1-5

[9] D. Culp. 2013. Lessons not learned: Insider threats in pathogen research. http:

//thebulletin.org/lessons-not-learned-insider-threats-pathogen-research. (April

2013). Date last accessed July 5, 2017.

Z.Dong, V. Garg, L. J. Camp, and A. Kapadia. 2012. Pools, clubs and security: de-

signing for a party not a person. In Proceedings of the 2012 New Security Paradigms

Workshop. Bertinoro, Italy, 77-86. https://doi.org/10.1145/2413296.2413304

D. Duan, Y. Li, Y. Jin, and Z. Lu. 2009. Community Mining on Dynamic Weighted

Directed Graphs. In Proceedings of the 1st ACM International Workshop on Complex

Networks Meet Information and Knowledge Management. Hong Kong, China, 11—

18. https://doi.org/10.1145/1651274.1651278

W. Eberle,]J. Graves, and L. Holder. 2010. Insider Threat Detection Using a

Graph-Based Approach. Journal of Applied Security Research 6, 1 (2010), 32-81.

https://doi.org/10.1080/19361610.2011.529413

W. Eberle and L. Holder. 2015. Scalable anomaly detection in graphs. Intelligent

Data Analysis 19, 1 (2015), 57-74. https://doi.org/10.3233/IDA-140696

[14] J. Edwards and M. Hoosenball. 2016. NSA contractor charged

with stealing secret data. http://www.reuters.com/article/

us-usa-cybersecurity-arrest-idUSKCN12520Y. (October 2016). Date last

accessed July 5, 2017.

FBI. 2010. Fannie Mae Corporate Intruder Sentenced to Over Three Years in

Prison for Attempting to Wipe Out Fannie Mae Financial Data . https://archives.

fbi.gov/archives/baltimore/press-releases/2010/ba121710.htm. (December 2010).

Date last accessed July 5, 2017.

S. Fortunato and D. Hric. 2016. Community detection in networks: A user guide.

Physics Reports 659 (2016), 1-44. https://doi.org/10.1016/j.physrep.2016.09.002

[17] J.-L. Guillaume and M. Latapy. 2004. Bipartite Structure of All Complex Networks.

Inform. Process. Lett. 90, 5 (2004), 215-221. https://doi.org/10.1016/j.ipl.2004.03.007

S. Heymann and B. Le Grand. 2013. Monitoring user-system interactions through

graph-based intrinsic dynamics analysis. In IEEE Seventh International Conference

on Research Challenges in Information Science. Paris, France, 1-10. https://doi.
org/10.1109/RCIS.2013.6577695

P. Holme and J. Saraméki. 2012. Temporal networks. Physics Reports 519, 3 (2012),

97-125. https://doi.org/10.1016/j.physrep.2012.03.001

iDatalabs. 2017. Companies using IBM Rational ClearCase. https://idatalabs.com/

tech/products/ibm-rational-clearcase. (June 23 2017). Date last accessed June 28,

2017.

A.D.Kent, L. M. Liebrock, and J. C. Neil. 2015. Authentication graphs: Analyzing

user behavior within an enterprise network. Computers & Security 48 (2015),

150-166. https://doi.org/10.1016/j.cose.2014.09.001

D. Koutra, T.-Y. Ke, U. Kang, D. H. Chau, H.-K. K. Pao, and C. Faloutsos. 2011.

Unifying Guilt-by-Association Approaches: Theorems and Fast Algorithms. In

Joint European Conference on Machine Learning and Knowledge Discovery in

Databases. Athens, Greece, 245-260. https://doi.org/10.1007/978-3-642-23783-6_

16

D. Koutra, J. Vogelstein, and C. Faloutsos. 2013. DeltaCon: A Principled Massive-

Graph Similarity Function. In Proceedings of the 13th SIAM International Confer-

ence on Data Mining (SDM). Austin, TX, USA, 162-170. https://doi.org/10.1137/1.

9781611972832.18

P. Moriano, J. Finke, and Y.-Y Ahn. 2017. Community-based anomalous event

detection in temporal networks. In Conference on Complex Systems. Cancun,

Mexico.

M. E. J. Newman. 2004. Detecting community structure in networks. The Eu-

ropean Physical Journal B 38, 2 (2004), 321-330. https://doi.org/10.1140/epjb/

€2004-00124-y

M. E. J. Newman. 2010. Networks: An introduction (1st ed.). Oxford University

Press.

C. C.Noble and D. J. Cook. 2003. Graph-Based Anomaly Detection. In Proceedings

of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining. Washington, DC, USA, 631-636. https://doi.org/10.1145/956750.

956831

[28] J.R.C.Nurse, O. Buckley, P. A. Legg, M. Goldsmith, S. Creese, G. R. T. Wright, and

M. Whitty. 2014. Understanding Insider Threat: A Framework for Characterising

Attacks. In IEEE Security and Privacy Workshops (SPW). San Jose, CA, USA, 214-

228. https://doi.org/10.1109/SPW.2014.38

P. Parveen, J. Evans, B. Thuraisingham, K. W. Hamlen, and L. Khan. 2011. In-

sider Threat Detection Using Stream Mining and Graph Mining. In IEEE Third

International Conference on Privacy, Security, Risk and Trust and IEEE Third

[10

[11

[15

[16

(18]

=
2

[20

[21

[22]

[24]

[25]

[26]

[27]

[29

https://doi.org/10.1109/ICDE.2011.5767885
https://doi.org/10.1007/s10618-014-0365-y
https://doi.org/10.1038/srep18893
https://doi.org/10.1109/INFCOMW.2010.5466700
https://doi.org/10.1109/INFCOMW.2010.5466700
https://doi.org/10.1109/SPW.2014.40
https://doi.org/10.1186/2190-8532-1-5
https://doi.org/10.1186/2190-8532-1-5
http://thebulletin.org/lessons-not-learned-insider-threats-pathogen-research
http://thebulletin.org/lessons-not-learned-insider-threats-pathogen-research
https://doi.org/10.1145/2413296.2413304
https://doi.org/10.1145/1651274.1651278
https://doi.org/10.1080/19361610.2011.529413
https://doi.org/10.3233/IDA-140696
http://www.reuters.com/article/us-usa-cybersecurity-arrest-idUSKCN12520Y
http://www.reuters.com/article/us-usa-cybersecurity-arrest-idUSKCN12520Y
https://archives.fbi.gov/archives/baltimore/press-releases/2010/ba121710.htm
https://archives.fbi.gov/archives/baltimore/press-releases/2010/ba121710.htm
https://doi.org/10.1016/j.physrep.2016.09.002
https://doi.org/10.1016/j.ipl.2004.03.007
https://doi.org/10.1109/RCIS.2013.6577695
https://doi.org/10.1109/RCIS.2013.6577695
https://doi.org/10.1016/j.physrep.2012.03.001
https://idatalabs.com/tech/products/ibm-rational-clearcase
https://idatalabs.com/tech/products/ibm-rational-clearcase
https://doi.org/10.1016/j.cose.2014.09.001
https://doi.org/10.1007/978-3-642-23783-6_16
https://doi.org/10.1007/978-3-642-23783-6_16
https://doi.org/10.1137/1.9781611972832.18
https://doi.org/10.1137/1.9781611972832.18
https://doi.org/10.1140/epjb/e2004-00124-y
https://doi.org/10.1140/epjb/e2004-00124-y
https://doi.org/10.1145/956750.956831
https://doi.org/10.1145/956750.956831
https://doi.org/10.1109/SPW.2014.38

[30

[31

[32

[33

[34

[35

[36

[37

[38

[39

]

]

]

]

]

]

Inernational Conference on Social Computing. Boston, MA, USA, 1102-1110.
https://doi.org/10.1109/PASSAT/Social Com.2011.211

Ponemon Institute. 2016. 2016 Cost of Cyber Crime Study & the Risk of
Business Innovation. Technical Report. http://www.ponemon.org/library/
2016- cost-of-cyber-crime- study- the-risk-of-business-innovation. Date last
accessed July 5, 2017.

S. Ranshous, S. Shen, D. Koutra S. Harenberg, C. Faloutsos, and N. F. Samatova.
2015. Anomaly detection in dynamic networks: a survey. Wiley Interdisciplinary
Reviews: Computational Statistics 7, 3 (2015), 223-247. https://doi.org/10.1002/
wics.1347

T. Rashid, I. Agrafiotis, and J. R. C. Nurse. 2016. A New Take on Detecting Insider
Threats: Exploring the use of Hidden Markov Models. In Proceedings of the 8th
ACM CCS International Workshop on Managing Insider Security Threats. 47-56.
https://doi.org/10.1145/2995959.2995964

Reuters. 2011. Ex-Ford engineer sentenced for trade secrets theft. http://www.
reuters.com/article/us-djc-ford-tradesecrets-idUSTRE73C3FG20110413. (April
2011). Date last accessed July 5, 2017.

J. Rissanen. 1978. Modeling by shortest data description. Automatica 14, 5 (1978),
465-471. https://doi.org/10.1016/0005-1098(78)90005-5

M. Rosvall and C. T. Bergstrom. 2008. Maps of random walks on complex networks
reveal community structure. Proceedings of the National Academy of Sciences 105,
4 (2008), 1118-1123. https://doi.org/10.1073/pnas.0706851105

J. Sun, C. Faloutsos, S. Papadimitriou, and P. S. Yu. 2007. GraphScope: parameter-
free mining of large time-evolving graphs. In Proceedings of the 13th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. San Jose, CA,
USA, 687-696. https://doi.org/10.1145/1281192.1281266

A. Vespignani. 2009. Predicting the Behavior of Techno-Social Systems. Science
325, 5939 (2009), 425-428. https://doi.org/10.1126/science.1171990

L. Weng, F. Menczer, and Y.-Y. Ahn. 2013. Virality Prediction and Community
Structure in Social Networks. Scientific Reports 3, 1 (2013), 2522. https://doi.org/
10.1038/srep02522

T. Zhou, J. Ren, M. Medo, and Y.-C. Zhang. 2007. Bipartite network projection
and personal recommendation. Physical Review E 76, 4 (2007), 046115. https:
//doi.org/10.1103/PhysRevE.76.046115

https://doi.org/10.1109/PASSAT/SocialCom.2011.211
http://www.ponemon.org/library/2016-cost-of-cyber-crime-study-the-risk-of-business-innovation
http://www.ponemon.org/library/2016-cost-of-cyber-crime-study-the-risk-of-business-innovation
https://doi.org/10.1002/wics.1347
https://doi.org/10.1002/wics.1347
https://doi.org/10.1145/2995959.2995964
http://www.reuters.com/article/us-djc-ford-tradesecrets-idUSTRE73C3FG20110413
http://www.reuters.com/article/us-djc-ford-tradesecrets-idUSTRE73C3FG20110413
https://doi.org/10.1016/0005-1098(78)90005-5
https://doi.org/10.1073/pnas.0706851105
https://doi.org/10.1145/1281192.1281266
https://doi.org/10.1126/science.1171990
https://doi.org/10.1038/srep02522
https://doi.org/10.1038/srep02522
https://doi.org/10.1103/PhysRevE.76.046115
https://doi.org/10.1103/PhysRevE.76.046115

	Abstract
	1 Introduction
	2 Related Work
	2.1 Characterization of insider threats
	2.2 Anomaly event detection in temporal graphs
	2.3 Insider threat detection using graph-based approaches

	3 Methods
	3.1 Temporal abstraction
	3.2 Bipartite graph abstraction
	3.3 One-mode projection abstraction
	3.4 Detection problem
	3.5 Algorithm performance abstraction
	3.6 Algorithm performance measure
	3.7 Proposed algorithm
	3.8 Dataset

	4 Results
	4.1 One-mode projection graph properties series
	4.2 Algorithm evaluation
	4.3 Algorithm performance

	5 Discussion
	6 Conclusions
	7 Acknowledgements
	References

