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ABSTRACT
There is a long history of studying the epidemiology of com-
puter malware. Much of this work has focused on the be-
haviors of specific viruses, worms, or botnets. In contrast,
we seek to utilize an extension of the simple SIS model to
examine the efficacy of various aggregate patching and re-
covery behaviors. We use the SIS model because we are
interested in global prevalence of malware, rather than the
dynamics, such as recovery, covered in previous work. We
consider four populations: vigilant and non-vigilant with in-
fected or not for both sets. We show, using our model and a
real world data set, that small increases in patch rates and
recovery speed are the most effective approaches to reduce
system wide vulnerabilities due to unprotected computers.
Our results illustrate that a public health approach may be
feasible, as what is required is that a subpopulation adopt
prophylactic actions rather than near-universal immuniza-
tion.

1. INTRODUCTION
Studying the spread of computer malware through the use
of epidemiological models has been a useful tool in under-
standing the dynamics of individual outbreaks of malware,
as well as giving some insight into possible mitigation poli-
cies. Kephart and White’s early work focusing on system-
wide prevalence examined effects of topology on virus spread
as well the possibility of a social response to infection [18,
19]. Other work has focused on describing the dynamics of
individual types of viruses, worms, or botnets.

In Kephart and White’s examination of the social response,
even a small social response was able to reduce significantly
the total level of infection in the system. However, this
result depends on a system where the recovered population
could not become infected. For this simulation we wanted to
examine the effects of social response when it led to recovery,
but this recovery did not protect the user from reinfection.

We use the results from these individual models, as well
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Figure 1: Permitted transitions in the SIS model.

as larger data on websites hosting phishing sites to model
system-wide properties of malware spread. We use these
system-wide properties to draw analogies from public health
research regarding the spread of sexually transmitted in-
fections (STIs) to examine organizational patching policies.
From these results, we argue that thinking of security prob-
lems in terms of public health policy is a good addition to
more traditional mental models of security.

2. BACKGROUND AND RELATED WORK
In the early work in adapting epidemiological models to
computer viruses, the local nature of data transfer had to
be taken into account. Computer viruses, in general, were
spread very locally, and certain assumptions such as homo-
geneous population and the probability that an infected in-
dividual could infect any other individual in the susceptible
population, did not hold [18]. In this environment Kephart
and White (KW) adapted the SIS (Figure 1) model to a di-
rected graph, to account for the non-homogeneous behavior
of program sharing.

In their model, each computer is a vertex in a graph and
an arc connects another computer in a program-exchange
relationship. The arcs are associated with individual rates
of infection and represent the set of vertices that can be
infected by a given vertex, while each vertex is given an
individual rate of recovery. Once a vertex has recovered,
it is immediately capable of being reinfected. This, as the
authors state, represents a very simple assumption that users
will not become more vigilant after being infected. While
this is a simple assumption, it seems to be a fairly good
approximation for real world data [29].

Their deterministic calculations correspond to early results
in prevalence driven epidemiological models [20], but failed
to capture the social or organizational aspects of dealing
with virus spreads. They modified their model to include a
social response, or, as they call it, a kill switch model. That
is, each computer, upon discovery and cleaning, alerts all



other computers it is connected to to alert them of possible
infection [19].

S Sa

I

δS

βIS µI

γISa

Figure 2: SIS model with Recovery and Social Re-
sponse.

This extension (Figure 2) assumes that recovery corresponds
to a temporary immunization from the virus [19]. Based
on these model extensions, KW show that central reporting
and response to an incident is important to containing the
incident. With central reporting and response, even if an
organization is above the epidemic threshold, an incident
can be limited in size and duration [19].

Other early work in modeling computer worms and viruses
used fairly standard epidemiological models, in particular,
variations of the SIR model. They overcame the limitations
of the well mixed assumption by incorporating the scanning
behavior found in many worms by expanding on Kephart
and White’s work on the effects of topology on virus spread.
Knight, Elder, and Wang, analyzed networks in hierarchi-
cal and cluster topologies to study the effects of immuniza-
tion from viruses in theoretical email networks [40]. New-
man, Forrest, and Balthrop expanded Knight et.al.’s work
by incorporating actual email network data and studies of
network structure from the realm of statistical physics [30].
Both Knight et.al. and Newman et.al. demonstrated that
targeted immunization could have a drastic effect on the
spreading of viruses spread by emails.

Newman et.al. draws on Albert, Jeong, and Barabási’s work
on describing the network topology of the Internet [8, 42],
as well as Pastor-Satorras and Vespignani’s work on the ef-
fects of that topology on the dynamics of epidemic models
[31, 32]. Albert, Jeong, and Barabási’s work demonstrated
the scale-free topology of the World Wide Web [8], but also
the difficulty in generating models that reflected the true
topology [42]. Pastor-Satorras and Vespignani, on the other
hand, demonstrated that a scale-free topology could lead to
the possibility of infinite duration, though low-level, preva-
lence of a given epidemic spread [32, 31].

Zou et.al.’s work on modeling the Code-Red worm using the
description and data provided by Moore et.al. modified the
standard SIS model by incorporating a variation of Kephart
and White’s social response model, incorporating scanning
rate, and allowing for infection rates to fluctuate in time [44,
28]. Including the social response in their model allowed
them to take into account human responses to the onset of
an infection [44].

Zou, Gong, and Towsley, also included a model that allowed

systems to become quarantined, removing them from the
susceptible and infectious populations [45]. They demon-
strated that removing computers from both populations for
some amount time was an effective mitigating factor [45].
However, as Serazzi and Zanero point out in their later work
on Sapphire, quarantines would be difficult to implement, as
infected hosts cannot be trusted to quarantine themselves
[36]. Zou and Towsley revisited their earlier work to demon-
strate that the increased range of addresses in IPv6 would
effectively reduce the total prevalence of routing worms such
as Sapphire. This, they show, is due to scanning worms in-
ability to access significant parts of the IPv6 address space
in a reasonable amount of time [43].

Moore et.al.’s data collection and description of the explosive
growth of the Sapphire worm required further modifications
to earlier models [27]. While Code-Red generally followed
standard models, Sapphire spread fast enough to become
bandwidth limited, which in turn, limited its total ability
to spread [27]. Serazzi and Zanero designed a model that
encoded network resources. Utilizing incoming and outgo-
ing traffic rates into their model, they were able to capture
the Sapphire’s aggressive scanning. This scanning choked
the Internet and greatly impeded Sapphire’s rate of growth
[36]. Serazzi and Zanero also point out the difficulty in im-
plementing global security policies such as quarantines and
hub immunizations.

Staniford, Paxson, and Weaver, contribute an excellent sum-
mary of many of the modeling attempts and call for a CDC
for computer malware [39]. We agree with this model of
thinking, and the data collected via their suggested sensors
and analysis would be useful for further mitigation of online
pathogens. However, the focus of this paper is more on the
effects of risk takers on the total prevalence of contagion.
Thus, we hope to show that a small group of users engaged
in risky behavior creates a threat to the risk adverse popu-
lation.

To this end we look primarily at August and Tunca’s work
on allowing users with illegal copies of software to patch [5]
and Choi, Fershtman, and Gandal’s work on cost of patching
[14]. While August and Tunca focus primarily on whether or
not firms should allow users of illegal copies to patch, Choi,
Fershtman, and Gandal look at the costs associated with
different user’s and their willingness to patch. We combine
both the pirates in August and Tunca’s work, with the non-
patching populations of Choi, Fershtman, and Gandal, to
show that limitations on user’s ability to maintain a secure
system is dangerous to the risk adverse population.

Models of sexually transmitted diseases have become very
complicated to deal the the multiple population interactions
[12, 17]. However, most multiple population models do not
couple the behavioral changes that occur do individual’s per-
ceptions of disease spread [33]. We build off of Perra et al.’s
work to create a two population model with a social response
that represents the ability of users to change behavior, and
thus, their population group. This differentiates our model
from more complicated models of STIs that use different
characteristics of infection for individual population groups,
but do not include behavioral responses to infection [11, 34,
37, 6].



3. METHODOLOGY
We first develop a simple model based on Kephart and White’s
initial social response model and Wang et. al.’s user vigi-
lance model. We then use our model to examine the long
term global prevalence of malware. Then we analyze the
various parameters within this model to identify which ones
are most effective at controlling systemic infection. We uti-
lize anonymized data on websites used to support phishing
attacks provided by Clayton and Moore, under a NDA, to
demonstrate that the model can capture observed malicious
behavior. We also attempt to answer questions about fea-
sible responses to malware diffusion that could result in re-
duction in botnet prevalence.

3.1 Model Creation
Kephart and White’s social response model (KW) demon-
strates the effectiveness of social responses to computer in-
fection. We extend their model to allow the possibility of
infection in the inoculated population. This extension in-
cludes aspects of Wang et. al.’s vigilance model [41]. Sim-
ilar to their approach, we view user vigilance as prevalence
based response to the infectious population, with vigilant
users returning to the more susceptible population at a con-
stant rate.

Wang et. al. assume that user vigilance declines after an
initial peak due to responses to new infections [41]. Rather
than using delay differential equations to model the decrease
in vigilance, we make vigilance reliant on the infectious pop-
ulation, and separate vigilant and non-vigilant users into
different compartments. Users return to the non-vigilant
population at a constant rate, which we feel represents the
effects of cost incurred due to maintenance of a secure sys-
tem. Another option would be to have the return rate in-
versely proportional to the infected population: The larger
the infectious population, the slower vigilant users return to
the non-vigilant population.

Since we are modeling the diffusion of malware, the individ-
ual behaviors are of limited use. We are more interested in
equillibrium states. Thus, the more common SIR type mod-
els previously used for models of malware infection are not
useful for our purposes. This assumption better captures
the long-term behavior seen in malware such as the Blaster
worm [7] as well as the persistent insecurities found in web
servers that allow them to be reinfected [29].

dSr
dt

= − (βr(Ir + Ia)Sr) − (η(Ir + Ia)Sa) + δSa + µrIr

dIr
dt

=βr(Ir + Ia)Sr − µrIr − µa1Ir − γa1IrSa

dSa
dt

= − βa(Ir + Ia)Sa − δSa + µa1Ir + µp2Ia+

γa1IrSa + γa2IaSa + η(Ir + Ia)Sa

dIa
dt

=βa(Ir + Ia)Sa − µp2Ia − γa2IaSa

(1)

The model we propose (Figure 3 and Equation 1) is a mod-
ified version of an SIS model with two interacting subpop-

ulations. Our model does not assume immunity in the Sa
population. This represents the fact that no security system
is 100% effective at stopping all vulnerabilities. We do not
find, in the course of our analysis, that the rates of infec-
tion in the resistant population are so low that they may be
ignored.

Our model also assumes a well-mixed, homogeneous popu-
lation. This is, in many ways, an unrealistic assumption,
given the patterns of connection displayed by social net-
works and browsing behavior [26]. Moreover, it distracts
from our metaphor of STIs, in that it assumes that all users
are equally likely to interact with one another, rather than
rely on contact patterns [15]. However, the dissemination
of many online attacks is based on random scanning, which
creates a scaled version of a well-mixed, homogeneous pop-
ulation [18]. Thus, this is a useful simplifying assumption,
but can be expanded upon in future work.

3.1.1 Parameter Definitions
Table 3.1.1 briefly summarizes the various symbols we use
in our model and analysis, which we describe here. Sr repre-
sents the susceptible population of non-vigilant users. These
are systems that do not have a form of malware and can be
infected. Sa represents susceptible systems within vigilant
users. When an Sr or Sa system is infected, it transitions
to the infected populations Ir or Ia, respectively.

η and δ govern the transitions between the two population
groups. η represents the response of non-vigilant users to
a given level of global infection. The higher η is, the faster
non-vigilant users secure their systems. δ governs the re-
sponse to the cost of maintaining a secure system. This is
a constant rate, and the higher δ is, the less accepting users
become of the cost, driving them to become insecure at a
faster rate.

βr, µr, βa, and µa2 are the infection spread parameters for
the non-vigilant and vigilant populations, respectively. βr
and βa govern how fast an infection spreads, while µr and
µa2 dictate how quickly a user recovers. Recovery could
be a simple as deleting an infected file, or as complex as
reinstalling an OS. We assume that βr > βa and µr < µa2
to represent the fact that users that are maintaining a secure
system will be less likely to become infected and more likely
to recover.

γa1 and γa2 embed the response to social pressure to recover
in the non-vigilant and vigilant populations, respectively.
Users responding to these parameters, but not to µr or µa2
do not scan their systems for potential threats, but respond
when an entity they know alerts them to a possible threat.
For example, a user may respond to a Firefox reminder to
update their browser or the exhortation of a friend. A spe-
cific instance of this was Google’s effort to alert users to
possible infections on their computers [21]. This is less than
ideal for maintaining a secure system, as, with limited con-
tact, infections can persist.

µa1 defines the non-vigilant user’s ability to clean or recover
their system to a more secure state. This requires that non-
vigilant users have access to the necessary patches and other
up-to-date software to maintain a secure computer, at least
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Figure 3: Two Population SIS model with Recovery and Social response.

Notation Definition

Sr Susceptible non-vigilant population
Sa Susceptible vigilant population
Ir Infected non-vigilant population
Ia Infected vigilant population
η Non-vigilant response to Infection
δ Rate to return to non-vigilant population
βr Infection rate in non-vigilant population
βa Infection rate in vigilant population
µr Non-vigilant recovery rate
µa1 Non-vigilant to vigilant recovery rate
µa2 Vigilant recovery rate
γa1 Non-vigilant to vigilant social response rate
γa2 Vigilant social response rate
R∞ Equillibrium infected population
R∞a Equillibrium infected vigilant population
R∞r Equillibrium infected non-vigilant population

Table 1: Table Giving Definitions to included Symbols



until the cost of maintainence, δ, drives them back to the
non-vigilant population.

3.2 Parameter Analysis
This model can be made equivalent to Kephart and White’s
“kill switch” model (Figure 2) by setting δ = 0.01, β = 0.5,
µa1 = 0.1, and γ1 = 0.05 and all other parameters to 0.
We use both the Kephart and White (KW) model and a
standard SIS model to compare our model under different
parameter conditions. This allows us to evaluate which pa-
rameters may be realistic and useful.

3.2.1 Parameter Analysis in Vigilant Population Only
We first analyze the various effects of adjusting the param-
eters on the vigilant population to identify the most impor-
tant parameters in controlling infection in that population.
From there we move to analyzing the whole system, individ-
ually adjusting certain parameters to identify the key pa-
rameters in the system as a whole. For these simulations we
vary one parameter and keep others constant. For each of
the parameters we hold constant: βa, µa2 , and γa2 , we set
them to 0.5, 0.1, .01 respectively.

These parameters are taken directly from KW and varied
in later simulations. This sets a fixed social response at
1/10 the level of the cleaning response. This allows us to
maintain consistency with our system-wide analysis below.
We then vary the parameters of interest for each simulation
from 0 to 1 by .01. Because we are only working with Sa, we
initialize the populations to: Sr = 0, Sa = 0.99, I = 0, Ia =
0.01. Without an infected population Ir or Ia, no further
infections are possible in this model.

3.2.2 Parameter Analysis with Both Populations
The system parameter analysis keeps the infection rate and
cleaning rate in the non-security aware population at the
same level as the standard SIS model used by KW (β = 0.5
and µr1 = 0.1). This reduces the number of variables we
must examine, and provides us with a reasonable worst case
scenario of eighty percent of non-vigilant computers infected.
However, we adjust the security aware population to reflect
a greater vigilance.

We set the infection rate of Sa to half of the non-vigilant
population’s rate. Similarly, the cleaning rate of Sa is twice
that found in the non-vigilant populations. In the vigilant
population, there is a social response, but this is 1/10th the
cleaning rate. This leads to the following parameter values:
(βa = 0.25, µa2 = 0.2, and γa2 = 0.02). We normalize the
initial populations to Sr = 0.99, Sa = 0, I = 0.01, Ia = 0.

Moreover, these parameter values are a reasonable estima-
tion of actual global prevalence. Our intial parameter values
in isolated populations lead to roughly 80% of the popula-
tion falling into the non-vigilant population, and roughly
80% of that population infected. Within the vigilant popu-
lation, the initial parameter values lead to roughly 13% of
that population infected. With no interactions between the
populations, this leads to a global prevalence of roughly 77%.
These results correspond to estimates of global prevalence.

In their report to the House of Lords in 2007, the Science

and Technology Committe reported on results from an ear-
lier study that showed that roughly 80% computers lacked
neccesary security measures, and roughly 72% of sampled
systems had some type of malware [35]. However, the com-
mittee noted that this study only sampled 354 computers,
so it probably was not an accurate portrayal of the actual
prevalence of malware. The Anti-Phishing Working Group’s
(APWG) mean observed infection rate for 2010 and the 1st
half of 2011, which is approximately 48% [3, 2, 1]. Thus,
our initial parameter values align very closely with the ear-
lier study, and represent approximately a 60% increase over
the APWG’s results.

3.2.3 Uncertainty and Sensitivity Analysis
The first two sets of analysis represent a very crude sensi-
tivity analysis given the number of parameters. We analyze
each parameter in light of a fixed system. This reduces the
problem from a nine dimensional problem to a one dimen-
sional one. However, it is not informative in terms of how
the parameters interact with one another. To address this,
we performed two types of sensitivity analysis in two situa-
tions.

We applied used Latin Hypercube Sampling (LHS) on the
set of all parameters to measure both epistemic uncertainty
and to perform a sensitivty analysis of the parameters given
the measured value of total infectious computers [10]. LHS
first samples from prior distributions of parameter values
and generates sampled output for the number of samples.
In our case, we used 1000 samples. This gives us our uncer-
tainty analysis as we examine the variability of outputs as
we vary the parameter values. From there LHS use a rank-
transform correlation coefficient to measure the sensitivity
of each parameter as it pertains to the measured output [10].

We used uniform priors for all parameter values, given our
own uncertainty of acceptable distributions. Our initial test
was performed over all parameters and used to identify the
key bifurcation parameters [25]. These bifurcation param-
eters are key to differentiating the major equillibrium be-
havior in the system; mainly, whether a contagion is main-
tained or dies out. After we identified the key bifurcation
parameters, we set them to ensure continued prevalence and
performed the analysis again. This allowed us to do uncer-
tainty and sensitivity analysis of the secondary parameters
associated with reducing prevalence.

3.3 Model Fitting
To fit our model to data we used MATLAB’s lsqcurvefit

function to fit the cumulative sum of the infected risk takers
and risk adverse populations to the cumulative sum of the
observed data. All parameters, as well as the initial popu-
lation values, had a lower bound of 0 and upper bound of
1. The population values were normalized to 1 before com-
putation. We took our total population to be 150,000 based
on the cumulative sum of the total number of attacks. We
ran each fit 50 times to try to avoid local minima.

We fit our model to the top ten companies targeted by phish-
ing scams. This data contains observed websites spoofing
legitimate businesses such as banks and other online com-
merce. This does not represent the social aspect of the at-
tack, but rather the infrastructure used to support such at-



tacks. We also fit our model to the total number of attacks
for those companies.

To identify the top ten targeted entities, we cleaned the
data to attempt to get unique identifiers. We found that,
for the most part, our cleaning manage to capture most of
the necessary data, but it can be refined for a more accu-
rate picture. However, that being said, the top ten targeted
entities account for 130559 out of 157355 observed attacks,
roughly 83% of the total observed attacks.

4. RESULTS
We examined the effects of parameter variation in different
phases. We first wanted to see if there was a way to reduce
total infection prevalence by adjusting only the parameters
associated with the vigilant population. After considering
only the vigilant population, we investigated the effects of
making the non-vigilant population respondent to the vigi-
lant population.

We conducted this investigation by adjusting the µa1 and
γa1 parameters to investigate the effect of a user’s ability to
recover to more secure behavior. We then adjusted the pa-
rameters that determined the speed of transition to and from
the vigilant population (η and δ) in uninfected users. When
the infection is less potent in vigilant users, we can reduce
the total infected population by having more users become
vigilant and having vigilant users stay vigilant longer. For
these simulations we do not adjust the infection or clean
rates, but keep the non-vigilant and vigilant population pa-
rameters at their fixed rates discussed above.

4.1 Effects of Adjusting Parameters in Vigi-
lant Population Only

In KW’s model of social response, they add a prevalence
driven recovery effect on top of the standard, constant rate
recovery. In order to investigate the effects of this recovery
in the population we varied the social response in the vig-
ilant population only, to see if it would lead to significant
reduction in the equilibrium of total infected. Since we split
the model into two subpopulations, we could also examine
source of the infections.

4.1.1 Simulation 1
In Kephart and White’s examination of the social response,
even a small social response was able to reduce the total level
of infection in the system. However, this relied on a system
where the recovered population could not become infected.
For this simulation we wanted to examine the effects of so-
cial response when it led to recovery, but this recovery did
not protect the user from reinfection. We set the infection
characteristics in the vigilant population to correspond to
KW’s model (βa = 0.5 and µ2 = 0.1) and varied γa2 .

Looking at the results (Figure 4) we find that only when the
combination of social response and cleaning rate is greater
than the infection rate does the infection die off. That is,
µa2

βa−γa2
= 1 is the bifurcation point in this single popula-

tion. When
µa2

βa−γa2
< 1 then R∞ = 1 − µa2

βa−γa2
, and when

µa2
βa−γa2

> 1, the infection disappears.
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Figure 4: Comparison between SIS, KW, and Our
Model, γa2 variable. Only when γa2 reaches high
rates relative to βa does R∞a fall.

These results mean that the total social response and the
cleaning rate must effect the network at the same rate as
the malware to be effective at eliminating its spread. For a
single population then, social response is a useful measure in
reducing the total infection rate, but is unlikely to be able
to reduce the infection from a pandemic unless either the
cleaning rate or the social response is unreasonably high.
For example, the dynamic characteristics of Conficker.C de-
scribed by Antonakakis et.al., could be considered a pan-
demic infection [4]

As we will see, when we look at Simulation 9, the social
response that allows non-vigilant to become vigilant, γa1 is
an key ingredient to reducing the total R∞. In our model
a shift for the vigilant to the non-vigilant population is as-
sociated with an increase in the rate of social patching. An
increase in the expense of recovery decreases the vigilant
population and thus decreases the presumptive efficacy of
social recovery. Moreover, since γa1 is prevalence driven
and δ is constant, any amount of shifting is able to produce
some amount of prevalent vigilant population.

4.1.2 Simulation 2
In Simulation 2 we varied the cleaning rate in the vigilant
population. Without any cleaning rate, even in the presence
of a social response, R∞ = 1. In fact, when µa = 0, the
bifurcation point becomes βa

γa2
= 1, and when βa

γa2
> 1,

R∞ = 1. When βa
γa2

< 1, R∞ = 0. This means that, within

a given population, the recovery rate is the most important
aspect for reducing total infection.

Moreover, if we compare the results from Simulation 1 with
Simulation 2 (Figure 5), as well as the bifurcation analysis,
we note that without some sort of cleaning rate, social re-
sponse is unable to reduce the total infected population on
its own unless its rate of response is higher than the rate
of infection. This means that only social responses with-
out a systematic cleaning or recovery policy merely reduce
the rate of spread, but not the overall infection equilibrium.
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Figure 5: Comparison between SIS, KW, and Our
Model, µa2 variable. Reductions in µa2 result in
widespread prevalence. Moderate increases in µa2
can significantly reduce R∞a . When the rate of re-
covery exceeds βa, R∞a = 0.

This offers an explanation for the continuing existence of,
for example, the long past Blaster worm [7]. Whether or
not increasing the rate of social response to the level that
it can be effective depends upon the topologies of the mal-
ware spread and social response. Enhancing social response
is the focus of related human subjects research in progress.
Exploring different malware diffusion and network topolo-
gies is the subject of future research.

4.1.3 Simulation 3
Simulation 3 is the complementary analysis to γa2 . There is
no pandemic outbreak if βa−γa2 < µa2 . In practical terms,
reducing βa corresponds to user behavior, rather than clean-
ing/recovery of systems, as represented by µa2 . Examples
of this include protected browsing, keeping a system up to
date, or other security measures.

We see that, obviously, βa is an important part of the infec-
tion. One thing that is noticable in our simulations is that
βa need not be very high to achieve a relatively high R∞.
When βa = 0.2 (twice µa2), R∞ = 1 − .1

(0.2−.01) = .474, a

value close to the 2 year average of infections provided by
the APWG [3, 2, 1].

4.2 Effects of Adjusting A Single Parameters
in Both Populations

For this set of analyses, we adjusted a single parameter in
both vigilant and non-vigilant populations and investigated
how it affected the R∞ for the entire population. This allows
us to study the global effect of a given parameter. The first
three simulations examine the effects of behavior changes in
the vigilant population. The final simulations study the in-
teractions between the two uninfected populations governed
by η and δ. We find that the principle way to reduce R∞ is
to allow infected individuals to recover to the vigilant pop-
ulation.
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Figure 6: Comparison between SIS, KW, and Our
Model, βP variable. When βa is reduced, global mal-
ware prevalence is reduced. Even at extreme values
of βa, µa is able to prevent R∞a from reaching 1.
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Figure 7: Comparison between SIS, KW, and Our
Model, γa2 variable. Increasing the social response
rate does reduce R∞, but even at extreme values,
γa2 is unable to significantly reduce R∞ due to the
effects of the large infected non-vigilant population.

4.2.1 Simulation 4
In this simulation we adjust the social response parameter
in the vigilant population. This allows us to see how in-
creasing the parameters in vigilant population has on the
system-wide R∞ (Figure 7). We notice, as in the follow-
ing two simulations, increasing the responses in the vigilant
population does little to reduce the total R∞.

The dynamic relationship between γa2 and R∞ is a bit more
complicated in this simulation, as this simulation contains
an Ir value that is non-zero, and transitions between the
populations. We are holding µa1 = 0 and γ1 = 0, so we know
that the relationship between η = 0.05 and δ = 0.04 gives us
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Figure 8: Comparison between SIS, KW, and Our
Model, µa2 variable. Reductions in µa2 lead to in-
creases in R∞, as the global prevalence tends to-
wards the behavior of the least secure population.
Increases in µa2 are capable in reducing R∞, but the
reductions in R∞ are mitigated by the behavior in
the non-vigilant population.

an approximate 80-20 split between security conscious users
and those that are unable or unwilling to engage in more
secure behaviors. We also know that when γa2 + µa2 > βa,
R∞a = 0, in an isolated situation.

However, even when γa2 = 1, we still end up with an in-
fected vigilant population. In this case, R∞a ≈ 0.072, while
R∞r ≈ .6. R∞a = 0.072 represents approximately 31% of
the vigilant population, while R∞r ≈ .6 is approximately
77% of the non-vigilant population. Recall Figure 4 that il-
lustrated that with only a vigilant population γa2 = 1 should
remove all contagion within the vigilant population. Thus,
the infections within the vigilant population are being driven
by the non-vigilant population.

4.2.2 Simulation 5
In this simulation we adjusted the cleaning rate within the
vigilant population. The key result here is if R∞a > R∞r ,
R∞a drives the total R∞ (Figure 8). However, this is un-
likely, as it is improbable that vigilant users will become
infected at a greater rate than non-vigilant users. While, if
R∞a < R∞r , but γa2 + µa2 < βa, the infection is driven
by both vigilant and non-vigilant populations. In the case
where R∞a < R∞r , and γa2 + µa2 > βa, the infections in
the security aware population are due to the prevalence of
infectious non-vigilant systems.

For example, when µa2 = 0, there is no cleaning and the
social response cannot reduce the spread of the infection
within the vigilant population. Thus, R∞a = 1. At the
end of the 1700 time steps in our simulation, R∞ = 1, with
most of it (99.998%) being made up of the “vigilant” popula-
tion. This suggests that the vigilant population cannot rely
merely on protective measures to avoid infection, but must
also be diligent in actively monitoring and maintaining their
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Figure 9: Comparison between SIS, KW, and Our
Model, βP variable. Increasing βa increases R∞, but
due to the values of γa2 and µa2 , R∞ performs as R∞r .
If γ2 or µa2 are reduced, R∞ would also increase, as
the vigilant population would be the least secure
population, in that case.

systems.

4.2.3 Simulation 6
This simulation adjusted the βa parameter to investigate
how allowing the vigilant population to reduce, or increase
its infection rate would affect the system-wide R∞. Given
the parameter values for µa2 , as βa increases to 1, the vigi-
lant populations dynamics approach those of the non-vigilant
population. Hence the convergence to R∞ = 0.8, as βa goes
to 1 (Figure 9).

What is interesting about this simulation is, if our recovery
and social response parameters were such that the reproduc-
tion rate of the vigilant population were greater than the
non-security aware population, it would pull the system to
a total R∞a , as users would flee the infectious environment
of the non-vigilant group, to the even more hostile vigilant
group.

4.2.4 Simulation 7
For this simulation, we varied η to see how increases in the
response rate of non-security users in the face of infection
impacted R∞. Recall that η represents a user’s ability to
transition from non-vigilant, to vigilant, to reduce the like-
lihood of infection, in the face of an impending infection.
Obviously, when η = 0, there is no transition to the security
aware population, and the model behaves as a standard SIS
model as shown in Figure 10.

However, when η > 0, the model behaves in an interesting
manner. It is possible to see that increasing η reduces the
system-wide R∞ (Figure 10). But, there is a complex re-
lationship going on between η and R∞a . As seen in Table
4.2.4 and Figure 10, while the total R∞ is decreasing, the
R∞a increases until 0.6 < η < 0.7, when it begins to de-
crease. It is also possible to see that R∞a , while increasing
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Figure 10: Comparison between SIS, KW, and Our
Model, η variable. Increases in the ability for the
susceptible non-vigilant population to become vigi-
lant reduces R∞.

η % Populationa % Populationa Infected R∞a

0 0 - 0
0.1 40.1 43.4 .174
0.2 54.9 39.9 .219
0.3 63.1 37.5 .237
0.4 68.5 35.7 .245
0.5 72.3 34.3 .248
0.6 75.2 33.1 .249
0.7 77.4 32.1 .249
0.8 79.2 31.3 .248
0.9 80.8 30.5 .246

Table 2: Interaction between η and R∞a

in those intervals, is always decreasing as a percentage of
the vigilant population.

η pulls more of the total population into the vigilant popula-
tion, but, until it is able to overcome the increasingly small
non-vigilant population, that population still exerts a grow-
ing cost on the vigilant population. This result is important,
since it indicates that even a small population engaged in
risk behavior, with limited opportunity to reduce their risk,
threatens a larger, risk averse population.

When η � δ, it is unable to pull R∞ to R∞a in the isolated
system case. Yet even an η as low as 0.1, is capable of
reducing R∞ more than any of the test values of βa, µa2 , or
γa2 . This suggests that if modifying η is feasible, it would
have a significant impact on global malware presence.

4.2.5 Simulation 8
In this simulation we varied the other part of the transitions
from non-vigilant to security. δ represents the constant rate
of relapse where users view the costs of maintaining security
may not be worth it. Reducing δ represents increasing a
users willingness to engage in more secure behavior, while
increasing δ represents users that are only willing to be vig-
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Figure 11: Comparison between SIS, KW, and Our
Model, δ variable. Reducing users willingness to be-
come non-vigilant reduces R∞.

ilant in the face of large outbreaks.

What becomes immediately apparent is that when δ = 0,
R∞ approaches R∞a (Figure 11). However, δ = 0, while
ideal, is unlikely. It represents a population that is fully
vigilant, irrespective of cost. We can see that reducing δ
from 0.04 to 0.01, results in R∞ ≈ .549, which is lower
than the R∞ achievable by extreme values in βa, µa2 , or
γa2 . It is unlikely that such lack of sensitivity is realistically
achievable, though it is probably reasonable to assume that
η and δ are of the same order of magnitude.

4.2.6 Simulation 9
In this simulation we investigate the ability of users to re-
cover to a vigilant population through social response, rather
than merely recovering to the standard susceptible popula-
tion. γa1 represents non-vigilant users’ ability to respond
to social pressure applied by non-infected vigilant users, not
just to clean their machines, but to also, at least for some
time, to become vigilant users.

In KW’s social response model, γa1 is kept to 1/10 of stan-
dard cleaning rate, but is effective at reducing R∞ due to
the lack of infection rate in the recovered population, and
the inability to recover directly back to the susceptible pop-
ulation [19]. We concur with their assumption, in terms of
limiting the social response rate. However, it is important to
note how effective increases in γa1 are at controlling width
of the infection peak curve, and mitigating R∞. Arguably,
γa1 should be limited in regards to β and µ, it may be, that
given certain network topologies, even a relatively low γa1
will still be effective at reducing R∞.

4.2.7 Simulation 10
In our final simulation, we vary µa1 , the parameter repre-
senting cleaning a computer and adapting vigilant behavior.
For example, a user reinstalling an OS and applying patches
and installing AV software, rather than just removing mal-
ware and hoping to avoid infection in the future. When
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Figure 12: Comparison between SIS, KW, and Our
Model, γa1 variable. Increases in a users’ ability to
become vigilant in response to social pressure is ef-
fective at reducing R∞.
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Figure 13: Comparison between SIS, KW, and Our
Model, µa1 variable. Allowing users to recover their
systems into the vigilant population is effective at
reducing R∞.

µa1 = 0, users are unable to become vigilant users until they
clean their computers and respond to the infection through
η. µa1 > 0 means that users have some method to recover
directly to vigilant behavior.

µa1 is not as effective as γa1 at limiting the duration of the
infection peak, but it does limit the peak’s height, limiting
the total infections. Moreover, µa1 is effective at low pa-
rameter values. µa1 = 0.05, or 1/10 β, reduces R∞ = .451,
nearly half the R∞ of the standard SIS model, and without
adjusting any other parameters. This suggests that provid-
ing users with the ability to recover to updated and secured
software/machines, should be a key component in any cam-
paign to limit global prevalence of malware.

4.3 Uncertainty and Sensitivity Analysis
We used Latin hypercube sampling to examine both the epis-
temic uncertainty of the model, as well as the sensitivity of
output variation to parameter variation [25]. The first step
in LHS is to sample the parameter space to create a col-
lection of measured outputs based on those samples. We
did this sampling twice: first with all parameters sampled,
followed by fixed values for the identified bifurcation param-
eters. In both cases we sampled the parameter space 1000
times. Our output of interest was total infection prevalence
(Figures 15 and 16).

Since the output of interest varies over time, so too does the
uncertainty. Thus, we created output probability distribu-
tions for each time step that we observed. The data that we
later analyzed spans 100 days, so we looked at the first 100
time steps in our model.

The key result of our uncertainty analysis is how often the
model settles into an equillibrium state with no infection. In
the case when all parameters are varied, this occurs roughly
70% of the time by day 20 (Figure 17), and when the bifur-
cation parameters are fixed, that percentage hovers around
60%, though it takes a bit longer to reach that level (Figure
18). This means that, even with the key bifurcation param-
eters fixed to ensure prevalence outside the impact of other
parameters, the vast majority of parameter combinations
lead to no prevalence. It is easy for the recovery parameters
to overcome the infection parameters in most cases due to
the number of recovery parameters.

The results from the sensitivity analysis are equally inter-
esting. Figure 19 shows the changing sensitivity of each
parameter as time progresses. In the initial stages of the
infection, social response and recovery from risk takers to
the risk adverse population is more important than recov-
ery within the risk adverse population. However, it rapidly
loses its importance on overall prevalence, while risk adverse
recovery increases its importance as time progresses.

All three of the standard recovery parameters (µx) are of ap-
proximately the same importance in the long term reduction
of prevalence. However, the infection rate in the risk adverse
group (βP ) loses its sensitivity gradually. The transmissions
between susceptible risk takers and susceptible risk adverse
(η and δ) are not significant in terms of affecting the global
prevalence of a contagion, just as social response within the
risk adverse community (γ2).

When we fix the main bifurcation parameters (βr = 0.5,
βa = 0.25, µr1 = 0.1, µa1 = 0.01, and µa2 = 0.02), however,
we get a better view of the effects of the social parameters.
When all parameters are varied, γ1 is significant parameter
for reducing prevalence in the initial stages of a contagion,
while γ2 is never significant. However, when a contagion ex-
ists, we find that both of the social response recovery rates
are important, at least until the later stages of a contagion,
moreso than the transfer from susceptible risk takers to sus-
ceptible risk adverse (Figure 20).

4.4 Fitting the Model to Data
In our examination of the data we sorted each attack based
on what online entity a given website was spoofing. We
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Figure 14: Plot of top-ten targeted entities by rank
and total number of observed attacks.

tabulated the total number of attacks on each entity to find
the top ten targets of observed attacks. These attacks have
a heavy tail distribution (Figure 14, and seem to confirm
Maillart and Sornette’s work [24], but lower ranked entities
still create large jitters in the overall behavior.

We normalized the SSE to the minimum error across all
fits and companies when we plotted the fits. Due to the
complex interactions of the parameters, while the model can
fit the data, often times the parameter values do not make
sense. Thus, the uncertainty and sensitivity analyses are
more important to this analysis, than the fit. However, the
fits are useful to see how the model can represent real world
data, and demonstrate the long term prevalence of attacks.

The model fits are found in Section A.3. The key results
found in our model fits is that, while our model can han-
dle the baseline prevalence of attacks in many cases (Figure
(21), it cannot handle abrupt spikes in contagion behavior
(Figure 35). This suggests that we need to have some further
refinement to our model. Ideally, we would like to consider
better representations of contact patterns, but also the ex-
ploration of birth/death rates, representing new computers
entering the network and older computers being shut off.

5. DISCUSSION
In Section 6 we reify the conclusions of the ten simulations
described in this work. In this section we discuss the possible
implications of our findings. That extreme changes in βa

have little effect in the equilibrium state of an infection is an
encouraging result. The rate of spread of an infection is one
variable completely subject to the control of the attacker.
Therefore great efficacy in changes in beta would imply that
defense could be ultimately futile.

Increasing the roughly equivalent variable, µa, is found to
be as ineffective as βa in decreasing the global prevalence of
infection. However, there are a significant caveats. The out-
come assumes that the malware will remain endemic with
a roughly constant β and that recovery does not result in
immunity to a particular malware component. Yet given
the existence of multiple malware attacks, the use of mul-
tiple vectors for a single malware variant, the lack of broad
immunity upon recovery, and the potential for malware to
evolve these are not unreasonable assumptions.

Individuals choosing the recover due to social pressure (which
includes automated pressure, such as Firefox exhortations
to upgrade) must be faster than the rate at the virus is
spreading. This is an extremely unlikely case. Yet the so-
cial recovery rate, γa1 , is one of the most effective measures
in altering the equilibrium when there are two populations
(vigilant and otherwise). However, increasing the response
rate in the vigilant population has little effect on the global
equilibrium. This is a mixed result given that it is arguably
easier to alter a response rate in an aware population, but
even modest gains in response of the unaware population
can significantly reduce the global prevalence.

Transfer rates between the two populations is the most ef-
ficacious strategy for reducing long-term equilibrium. This
argues that small increases in vigilance can result in signifi-
cant increases in outcomes. Thus the title of the paper where
increased use of healthy behaviors (e.g., contraception use
or smoking cessation) can greatly reduce unintended con-
sequences over the population as a whole. Compared this
to situations where the entire population must engage in
healthy behaviors (e.g., immunization) to result in signifi-
cant outcomes. This argues for an approach that is closer to
risk communication than mandates. Luckily, risk communi-
cation is feasible while global mandates are not.

Users must be able to act upon available information, e.g.,
δ should be quite low. The requires an ease of access to
the resources necessary to engage in more secure behavior.
Within the public health sector, barriers to treatment and
preventative measures have been shown to greatly increase
overall costs. For example, Franzini et.al., estimated a likely
additional cost of $43.6 million in a one year period in Texas,
if adolescents were required to notify parents when they re-
ceived reproductive health care [16]. This suggests that al-
lowing access to security patches, even in the case of ille-
gal copies, would be effective in lowering system-wide costs,
though offering those patches may not be profit maximizing
for a given firm [22].

Moreover, risk communication, when combined with access
to treatment resources, has been effective in reducing preva-
lence in the public health sector. Spain et.al. demonstrated
the effectiveness of at risk communication at recruiting at
risk groups to utilize reproductive and preventative health
care [38]. Several studies demonstrate the effectiveness of



Youth Peer Education services at referring at risk popula-
tions to appropriate clinics [23, 13]. When coupled with a
voucher system for care, use of clinics increases dramatically
[9]. Thus, there are extant systems of response and informa-
tion that we can take advantage of in regards to encouraging
more secure behavior.

The difference between the two populations are rate of re-
covery (µ), responsive to social pressure (γ) and decreased
rate of infection (β). Therefore the findings above, of lack of
efficacy of contact rate in the risk adverse population (βa),
social recovery rate (γa2), and recovery rate (µa2) are due
primarily to the infectous interaction that the risk adverse
population exerts as well as the interactions between these
variables and the ability to become risk adverse before infec-
tion (δ) and difficulty to remain risk adverse (η). In future
work we will extend the model to include this feedback.

6. CONCLUSIONS
In this paper we created and examined the parameters of
two-population SIS epidemiological model in regards to global
prevalence of malware. The two populations, vigilant, and
non-security aware, interact in many different ways (Figure
3), which affects R∞, to equilibrium infected population.
We examined single parameter variations within the vigi-
lant population and the system as a whole to identify key
components to addressing the spread of malware.

In our first set of simulations, we examined the vigilant pop-
ulation in isolation, seeking to identify the most effective
parameter for reducing or removing malware in that popu-
lation. We found that, within the single population it was
possible to completely eliminate malware spread by setting
µa2 + γa2 > βa. We also showed that adjusting the recov-
ery rate µa2 is the most effective way to reduce R∞ in the
vigilant population.

In our second set of simulations, we looked at the entire
system and tried to find which parameters were effective at
reducing global R∞, while keeping the infection and recov-
ery rates (β and µ) in the non-vigilant population constant.
Here we find that, while we could eliminate the spread of
infection within the vigilant population by overcoming the
infection rate, adjusting the vigilant parameters had little
effect on R∞, and infections in the non-vigilant population
drove the infections. However, when we examined the pa-
rameters governing transitions from non-vigilant to vigilant,
we discovered several possibilities for infection control.

When we evaluated the transitions between uninfected non-
vigilant and uninfected vigilant populations, we found that,
while η was effective at making more users vigilant, even a
small population of infected non-vigilant users could nega-
tively impact the vigilant population. Similarly, when we
prevented users from returning to the non-vigilant popula-
tion, we could limit the infection spread to R∞a . Yet, this
represents an unrealistic expectation of inelasticity (i.e., all
users demanding secure behavior, regardless of cost).

Examing the parameters governing the recovery of infected
non-vigilant to uninfected security aware, we find that al-
lowing users to clean and repair their systems with updated
and secure software is the most effective way at managing

global prevalence of malware infection. Even at low levels,
the ability to recover to the risk adverse population (µa1)
greatly reduces the global infection prevalence. Additionally,
while not as effective as the risk adverse recovery rate (µa1),
the social response recovery to the risk adverse population
(γa1) is the next most effective parameter. This suggests
that coupling social response, along with access to updates
for all users, would be an effective measure for reducing the
prevalence of global malware.
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APPENDIX
A. ADDITIONAL FIGURES
A.1 Uncertainty Analysis



A.2 Sensitivity Analysis
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Figure 15: Output from 1000 samples from the parameter space with all parameters varied.
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Figure 16: Output from 1000 samples from the parameter space with bifurcation parameters fixed.
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Figure 17: Probability distributions of outputs for each time used generated from 1000 runs using randomly
sampled parameters.
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Figure 18: Probability distributions of outputs for each time used generated from 1000 runs using randomly
sampled parameters with bifurcation parameters fixed.
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Figure 19: Partial ranked correlation coefficients for all parameters calculated for total infections at time=t.
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Figure 20: Partial ranked correlation coefficients for non-bifurcation parameters calculated for total infections
at time=t.



A.3 Model Fitting
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Figure 21: Top five model fits for the top targeted online entity
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Figure 22: Top five model fits for the cumulative sum of observed attacks on the top targeted online entity
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Figure 23: Top five model fits for the 2nd ranked targeted online entity
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Figure 24: Top five model fits for the cumulative sum of observed attacks on the 2nd ranked targeted online
entity
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Figure 25: Top five model fits for the 3rd ranked targeted online entity
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Figure 26: Top five model fits for the cumulative sum of observed attacks on the 3rd ranked targeted online
entity
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Figure 27: Top five model fits for the 4th ranked targeted online entity
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Figure 28: Top five model fits for the cumulative sum of observed attacks on the 4th ranked targeted online
entity
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Figure 29: Top five model fits for the 5th ranked targeted online entity
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Figure 30: Top five model fits for the cumulative sum of observed attacks on the 5th ranked targeted online
entity
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Figure 31: Top five model fits for the 6th ranked targeted online entity
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Figure 32: Top five model fits for the cumulative sum of observed attacks on the 6th ranked targeted online
entity
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Figure 33: Top five model fits for the 7th ranked targeted online entity
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Figure 34: Top five model fits for the cumulative sum of observed attacks on the 7th ranked targeted online
entity
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Figure 35: Top five model fits for the 8th ranked targeted online entity
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Figure 36: Top five model fits for the cumulative sum of observed attacks on the 8th ranked targeted online
entity
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Figure 37: Top five model fits for the 9th ranked targeted online entity
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Figure 38: Top five model fits for the cumulative sum of observed attacks on the 9th ranked targeted online
entity



Sep−23 Oct−03 Oct−13 Oct−23 Nov−02 Nov−12 Nov−22 Dec−02 Dec−12 Dec−22
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

x 10
−4

Time (Days)

In
fe

ct
io

ns
/1

50
00

0 
C

om
pu

te
rs

 

 
Observed Data
     1
1.0803
2.0851
2.1985
 2.593

Figure 39: Top five model fits for the 10th ranked targeted online entity
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Figure 40: Top five model fits for the cumulative sum of observed attacks on the 10th ranked targeted online
entity
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Figure 41: Top five model fits for the total attacks against the top ten targeted online entities.
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Figure 42: Top five model fits for the total cumulative sum of observed attacks on the top ten targeted online
entities
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