Trust: A Collision of Paradigms

As Presented at Financial Cryptography 2001
Grand Cayman, February 19

L. Jean Camp, Catherine McGrath, Helen Nissenbaum
Trust is approached differently by different disciplines

- Social sciences
 - Experiments designed to evaluate how people extend trust
 - Game theory
 - Common assumption: information exposure == trust
- Philosophy
 - Macro approach
 - Examine societies and cultural practices
- Computer Security
 - Build devices to enable trust
An Interdisciplinary Approach

- Informed by philosophy
- Examine social science theory
 - Developed three hypotheses
- Apply to computer security
- Search for inconsistencies between the disciplines
Philosophy Suggests

- Trust is necessary to simplify life
 - People have an innate desire or need to trust
 - People will default to extending trust
Research on Humans Suggest...

- Humans may not differentiate between machines
- Humans become more trusting of ‘the network’
- Humans begin with too much trust for computers
 - Confirmed by philosophical macro observation
 - Confirmed by computer security incidents
 - E-mail based
 - Scams
 - Viruses
 - Hoaxes
Three Hypotheses

- Do humans respond differently to human or computer "betrayals" in terms of forgiveness?
- People interacting with a computer do not distinguish between computers as individuals but rather respond to their experience with "computers"
- The tendency to differentiate between remote machines increases with computer experience
So What?
H1: Response to Failure

Do humans respond differently to human or computer "betrayals" in terms of forgiveness?

- Attacks which are viewed as failures as ‘ignored’ or forgiven

- Technical failures as seen as accidents rather than design decisions
 - May explain why people tolerate repeated security failures

- May inform the balance between false positives and negatives in intrusion detection
 - Rarely identified malicious behavior taken more seriously
 - Technical failures easily forgiven
H2: Individiation

- People interacting with a computer do not distinguish between computers as individuals but rather respond to their experience with "computers”
 - People become more trusting
 - People differentiate less
 - Do people learn to differentiate or trust
The tendency to differentiate between remote machines decreases with computer experience

- Explicit implication of second hypothesis

- Will either confirm or undermine the second hypothesis
If Hypotheses are Correct

- Users may bad security managers
 - PGP, P3P,....
- Security should necessarily be a default
- Does end-to-end security maximize autonomy without end-to-end human abilities and tendencies?
- At the least security mechanisms should be designed to address hypotheses
Computer security is built for machines

- **Passwords**
 - Humans are a bad source of entropy

- **SSL**
 - Two categories: secure and not secure
 - Does not encourage differentiation
 - Every site should include a unique graphic with the lock
 - Computer security should seek to differentiate machines
Privacy standards are built for machines

- **P3P assumes**
 - All merchants trustworthy w.r.t. their own policies
 - Assumes increasingly sophisticated user
 - One standard for all transactions

- **PGP**
 - Monotonic increase in trust
 - No reset
 - No decrease in rate of trust extension
 - To compensate for increasing trust
 - No global or local reset
 - E.g. change in status
Key revocation is built for Machines

- CRL tend to be single level
- Different levels of key revocation are needed
 - Falsified initial credential
 - All past transactions suspect
 - Change in status
 - Future transactions prohibited
 - Refusal of renewal
 - Current systems adequate
- CRL should reflect the entire systems in which they work, including the social system
WHAT TO CONCLUDE?

Computer security must be designed with social science in mind

- OR -

Assuming the human will act like the computer is the core design problem, remove assumptions about humans
Hopes for Future Research

- Test the hypotheses
 - Using traditional social science practices
 - Evaluate data for different cultural setting
 - Start with US (MA then S. CA.) then UK, India due to language similarities

- Examine computer security mechanisms
 - How to minimize assumptions about human behavior
 - End to end enabling autonomy vs. limiting risk exposure
 - Not unlike a timeless government question?